Realgar (As 4 S 4 ), as a mineral drug in traditional Chinese medicine, is currently used as the remedy for acute promyelocytic leukemia and has been proven to have relatively milder side effects as compared to the ...Realgar (As 4 S 4 ), as a mineral drug in traditional Chinese medicine, is currently used as the remedy for acute promyelocytic leukemia and has been proven to have relatively milder side effects as compared to the arsenolite (As 2 O 3 )-based drugs. We have previously demonstrated that realgar induces differentiation in HL-60 cells, and the differentiation is associated with serine/threonine protein phosphatases, MAPK signaling pathways, and mitochondrial transmembrane potential decrease. In this study, we further explore the roles of mitochondrial permeability transition pore and reactive oxygen species (ROS) in realgar-induced differentiation in HL-60 cells. The differentiation was preceded by marked changes in the cellular level of ROS, and could be enhanced by SB202190, a p38 MAPK inhibitor. In addition, the efficacy of realgar was suppressed by closing the MPTP with an inhibitor. Taken together, these findings indicate that the opening of MPTP and the alteration of ROS generation were involved in realgar-induced differentiation.展开更多
基金supported by the Project of National Base for Talent Training in Basic Science(Grant No.J0830836)
文摘Realgar (As 4 S 4 ), as a mineral drug in traditional Chinese medicine, is currently used as the remedy for acute promyelocytic leukemia and has been proven to have relatively milder side effects as compared to the arsenolite (As 2 O 3 )-based drugs. We have previously demonstrated that realgar induces differentiation in HL-60 cells, and the differentiation is associated with serine/threonine protein phosphatases, MAPK signaling pathways, and mitochondrial transmembrane potential decrease. In this study, we further explore the roles of mitochondrial permeability transition pore and reactive oxygen species (ROS) in realgar-induced differentiation in HL-60 cells. The differentiation was preceded by marked changes in the cellular level of ROS, and could be enhanced by SB202190, a p38 MAPK inhibitor. In addition, the efficacy of realgar was suppressed by closing the MPTP with an inhibitor. Taken together, these findings indicate that the opening of MPTP and the alteration of ROS generation were involved in realgar-induced differentiation.