Differential space-time coding was proposed recently in the literature for multi-antenna systems, where neither the transmitter nor the receiver knows the fading coefficients. Among existing schemes, double differenti...Differential space-time coding was proposed recently in the literature for multi-antenna systems, where neither the transmitter nor the receiver knows the fading coefficients. Among existing schemes, double differential space-time (DDST) coding is of special interest because it is applicable to continuous fast time-varying channels. However, it is less effective in fre- quency-selective fading channels. This paper’s authors derived a novel time-frequency double differential space-time (TF-DDST) coding scheme for multi-antenna orthogonal frequency division multiplexing (OFDM) systems in a time-varying fre- quency-selective fading environment, where double differential space-time coding is introduced into both time domain and fre- quency domain. Our proposed TF-DDST-OFDM system has a low-complexity non-coherent decoding scheme and is robust for time- and frequency-selective Rayleigh fading. In this paper, we also propose the use of state-of-the-art low-density parity-check (LDPC) code in serial concatenation with our TF-DDST scheme as a channel code. Simulations revealed that the LDPC based TF-DDST OFDM system has low decoding complexity and relatively better performance.展开更多
In this paper,we mainly discuss a discrete estimation of the average differential entropy for a continuous time-stationary ergodic space-time random field.By estimating the probability value of a time-stationary rando...In this paper,we mainly discuss a discrete estimation of the average differential entropy for a continuous time-stationary ergodic space-time random field.By estimating the probability value of a time-stationary random field in a small range,we give an entropy estimation and obtain the average entropy estimation formula in a certain bounded space region.It can be proven that the estimation of the average differential entropy converges to the theoretical value with a probability of 1.In addition,we also conducted numerical experiments for different parameters to verify the convergence result obtained in the theoretical proofs.展开更多
A differential modulation scheme using space-time block codes is put forward. Compared with other schemes, our scheme has lower computational complexity and has a simpler decoder. In the case of three or four transmit...A differential modulation scheme using space-time block codes is put forward. Compared with other schemes, our scheme has lower computational complexity and has a simpler decoder. In the case of three or four transmitter antennas, our scheme has a higher rate a higher coding gain and a lower bit error rate for a given rate. Then we made simulations for space-time block codes as well as group codes in the case of two, three, four and five transmit antennas. The simulations prove that using two transmit antennas, one receive antenna and code rate of 4 bits/s/Hz, the differential STBC method outperform the differential group codes method by 4 dB. Useing three, four and five transmit antennas, one receive antenna, and code rate of 3 bits/s/Hz are adopted, the differential STBC method outperform the differential group codes method by 5 dB, 6. 5 dB and 7 dB, respectively. In other words, the differential modulation scheme based on space-time block code is better than the corresponding differential modulation scheme展开更多
The performance loss of an approximately 3 dB signal-to-noise ratio is always paid with conventional differential detection compared to the related coherent detection. A new detection scheme consisting of two steps is...The performance loss of an approximately 3 dB signal-to-noise ratio is always paid with conventional differential detection compared to the related coherent detection. A new detection scheme consisting of two steps is proposed for the differential unitary space-time modulation (DUSTM) system. In the first step, the data sequence is estimated by conventional unitary space-time demodulation (DUSTD) and differentially encoded again to produce an initial estimate of the transmitted symbol stream. In the second step, the initial estimate of the symbol stream is utilized to initialize an expectation maximization (EM)-based iterative detector. In each iteration, the most recent detected symbol stream is employed to estimate the channel, which is then used to implement coherent sequence detection to refine the symbol stream. Simulation results show that the proposed detection scheme performs much better than the conventional DUSTD after several iterations.展开更多
Based on the Complex Orthogonal Linear Dispersion (COLD) code,a novel linear Differ- ential Space-Time Modulation (DSTM) design is proposed in this paper.Compared with the existing nonlinear DSTM schemes based on grou...Based on the Complex Orthogonal Linear Dispersion (COLD) code,a novel linear Differ- ential Space-Time Modulation (DSTM) design is proposed in this paper.Compared with the existing nonlinear DSTM schemes based on group codes,the proposed linear DSTM scheme is easier to design, enjoys full diversity and allows for a simplified differential receiver,which can detect the transmitted symbols separately.Furthermore,compared with the existing linear DSTM based on orthogonal design, our new construction can be applied to any number of transmit antennas.Similar to other algorithms, the proposed scheme also can be demodulated with or without channel estimates at the receiver,but the performance degrades approximately by 3dB when estimates are not available.展开更多
Previously proposed differential modulation schemes for time-varying channels may not achieve the full transmit diversity and the maximum Doppler diversity simultaneously. Based on an existing basis expansion model, a...Previously proposed differential modulation schemes for time-varying channels may not achieve the full transmit diversity and the maximum Doppler diversity simultaneously. Based on an existing basis expansion model, a new differential space-time code, which wisely combines interleaver/de-interleaver with traditonal space-time transmitting technique to overcome such limitation, .is presented. Two noncoherent differential decoders, named decision-feedback differential detector (DF-DD) and Viterbi-algorithmbased multiple-symbol-detection differential detector ( MSD-DD), are also derived. We show that our design may recover data symbols with full antenna diversity and the maximum Doppler diversity at high signal-to-noise ratio. System performance is evaluated with simulations.展开更多
Differential space-time (DST) modulation has been proposed recently for multiple-antenna systems over Rayleigh fading channels, where neither the transmitter nor the receiver knows the fading coefficients. Among exi...Differential space-time (DST) modulation has been proposed recently for multiple-antenna systems over Rayleigh fading channels, where neither the transmitter nor the receiver knows the fading coefficients. Among existing schemes, differential modulation is always performed in the time domain and suffers performance degradations in frequency-selective fading channels. In order to combat the fast time and frequency-selective fading, a novel time-frequency differential space-time (TF-DST) modulation scheme, which adopts differential modulation in both time and frequency domains, is proposed for multi-antenna orthogonal frequency division multiplexing (OFDM) system. A corresponding suboptimal yet low-complexity non-coherent detection approach is also proposed. Simulation results demonstrate that the proposed system is robust for time and frequency-selective Rayleigh fading channels.展开更多
Two reduced-complexity decoding algorithms for unitary space-time codes based on tree-structured constellation are presented. In this letter original unitary space-time constellation is divided into several groups. Ea...Two reduced-complexity decoding algorithms for unitary space-time codes based on tree-structured constellation are presented. In this letter original unitary space-time constellation is divided into several groups. Each one is treated as the leaf nodes set of a subtree. Choosing the unitary signals that represent each group as the roots of these subtrees generates a tree-structured constellation. The proposed tree search decoder decides to which sub tree the receive signal belongs by searching in the set of subtree roots. The final decision is made after a local search in the leaf nodes set of the se-lected sub tree. The adjacent subtree joint decoder performs joint search in the selected sub tree and its “surrounding” subtrees,which improves the Bit Error Rate (BER) performance of purely tree search method. The exhaustively search in the whole constellation is avoided in our proposed decoding al-gorithms,a lower complexity is obtained compared to that of Maximum Likelihood (ML) decoding. Simulation results have also been provided to demonstrate the feasibility of these new methods.展开更多
A new constellation which is the multiplication of the rotation matrix and the diagonal matrix ac- cording to the number of transmitters is proposed to increase the diversity product, the key property to the performan...A new constellation which is the multiplication of the rotation matrix and the diagonal matrix ac- cording to the number of transmitters is proposed to increase the diversity product, the key property to the performance of the differential unitary space-time modulation. Analyses and the simulation results show that the proposed constellation performs better and 2dB or more coding gain can be achieved over the traditional cyclic constellation.展开更多
Space-Time Block (STB) code has been an effective transmit diversity technique for combating fading due to its orthogonal design, simple decoding and high diversity gains. In this paper, a unit-rate complex orthogonal...Space-Time Block (STB) code has been an effective transmit diversity technique for combating fading due to its orthogonal design, simple decoding and high diversity gains. In this paper, a unit-rate complex orthogonal STB code for multiple antennas in Time Division Duplex (TDD) mode is proposed. Meanwhile, Turbo Coding (TC) is employed to improve the performance of proposed STB code further by utilizing its good ability to combat the burst error of fading channel. Compared with full-diversity multiple antennas STB codes, the proposed code can implement unit rate and partial diversity; and it has much smaller computational complexity under the same system throughput. Moreover, the application of TC can effectively make up for the performance loss due to partial diversity. Simulation results show that on the condition of same system throughput and concatenation of TC, the proposed code has lower Bit Error Rate (BER) than those full-diversity codes.展开更多
Differential modulation was widely used for wireless networks in which channel estimation was diffi-cult.Based on orthogonal design,a novel distributed differential space-time coding/decoding scheme forM-PSK modulatio...Differential modulation was widely used for wireless networks in which channel estimation was diffi-cult.Based on orthogonal design,a novel distributed differential space-time coding/decoding scheme forM-PSK modulations was proposed,which had a high code rate of 2/3 and second-order diversity for thetwo-user cooperative networks.The performance of decode-and-forward (DF) protocols was evaluated.Simulations show that the differential space-time modulation scheme in this paper has better bit error rate(BER) performance or higher code rate than the schemes proposed by Tarasak and Wang when interuserchannel states are good enough.The impacts of transmission error between two users for the whole systemBER performance were also investigated.展开更多
Differential unitary space-time modulation (DUSTM), which obtains full transmit diversity in slowly fiat-fading channels without channel state iufonnation, has generated significant interests recently. To combat fre...Differential unitary space-time modulation (DUSTM), which obtains full transmit diversity in slowly fiat-fading channels without channel state iufonnation, has generated significant interests recently. To combat frequency-selective fading, DUSTM has been applied to each subcarrier of an OFDM system and DUSTM-OFDM system was proposed. Both DUSTM and DUSTM-OFDM, however, are designed for slowly fading channels and suffer performance deterioration in fast fading channels. In this paper, two novel differential unitary space-time modulation schemes are proposed for fast fading channels. For fast fiat-fading channels, a subatrix interleaved DUSTM (SMI-DUSTM) scheme is proposed, in which matrix-segmentation and sub-matrix based interleaving are introduced into DUSTM system. For fast frequency-selective fading channels, a differential unitary space-frequency modulation (DUSFM) scheme is proposed, in which existing unitary space-time codes are employed across transmit antennas and OFDM subcarriers simultaneouslv and differential modulation is performed between two adjacent OFDM blocks. Compared with DUSTM and DUSTM-OFDM schemes, SMI-DUSTM and DUSFM-OFDM are more robust to fast channel fading with low decoding complexity, which is demonstrated by performance analysis and simulation resuits.展开更多
In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubi...In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.展开更多
In this paper, the design of signal constellations parameters is studied for Differential Unitary Space-Time Modulation (DUSTM) based on the design criterion of maximizing the diversity product. Further, noninteger se...In this paper, the design of signal constellations parameters is studied for Differential Unitary Space-Time Modulation (DUSTM) based on the design criterion of maximizing the diversity product. Further, noninteger searching method for the signal constellation parameters design is proposed in order to get better codes. Experimental results show that under the different Doppler spread and data transmission rate, the proposed design performs better than the previous design using integer parameters in Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) system over frequency-selective fading channels.展开更多
A new scheme combining a scalable transcoder with space time block codes (STBC) for an orthogonal frequency division multiplexing (OFDM) system is proposed for robust video transmission in dispersive fading channe...A new scheme combining a scalable transcoder with space time block codes (STBC) for an orthogonal frequency division multiplexing (OFDM) system is proposed for robust video transmission in dispersive fading channels. The target application for such a scalable transcoder is to provide successful access to the pre-encoded high quality video MPEG-2 from mobile wireless terminals. In the scalable transcoder, besides outputting the MPEG-4 fine granular scalability (FGS) bitstream, both the size of video frames and the bit rate are reduced. And an array processing algorithm of layer interference suppression is used at the receiver which makes the system structure provide different levels of protection to different layers. Furthermore, by considering the important level of scalable bitstream, the different bitstreams can be given different level protection by the system structure and channel coding. With the proposed system, the concurrent large diversity gain characteristic of STBC and alleviation of the frequency-selective fading effect of OFDM can be achieved. The simulation results show that the proposed schemes integrating scalable transcoding can provide a basic quality of video transmission and outperform the conventional single layer transcoding transmitted under the random and bursty error channel conditions.展开更多
A design of super-orthogonal space-time trellis codes (SOSTTCs) based on the trace criterion (TC) is proposed for improving the design of SOSTTCs. The shortcomings of the rank and determinant criteria based design...A design of super-orthogonal space-time trellis codes (SOSTTCs) based on the trace criterion (TC) is proposed for improving the design of SOSTTCs. The shortcomings of the rank and determinant criteria based design and the advantages of the TC-based design are analyzed. The optimization principle of four factors is presented, which includes the space-time block coding (STBC) scheme, set partitioning, trellis structure, and the assignment of signal subsets and STBC schemes in the trellis. According to this principle, systematical and handcrafted design steps are given in detail. By constellation expansion, the code performance can be further improved. The code design results are given, and the new codes outperform others in the simulation.展开更多
A method of space-time block coding (STBC) system based on adaptive beamforming of cyclostationarity signal algorithm is proposed.The method uses cyclostationarity of signals to achieve adaptive beamforming,then con...A method of space-time block coding (STBC) system based on adaptive beamforming of cyclostationarity signal algorithm is proposed.The method uses cyclostationarity of signals to achieve adaptive beamforming,then constructs a pair of low correlated transmit beams based on beamform estimation of multiple component signals of uplink.Using these two selected transmit beams,signals encoded by STBC are transmitted to achieve diversity gain and beamforming gain at the same time,and increase the signal to noise ratio (SNR) of downlink.With simple computation and fast convergence performance,the proposed scheme is applicable for time division multiple access (TDMA) wireless communication operated in a complex interference environment.Simulation results show that the proposed scheme has better performance than conventional STBC,and can obtain a gain of about 5 dB when the bit error ratio (BER) is 10-4.展开更多
Based on the anti-jamming performance of differential frequency hopping (DFH) systems in Additive White Gaussian Noise (AWGN) channel, Fountain code is introduced to the DFH systems as the outer error correcting c...Based on the anti-jamming performance of differential frequency hopping (DFH) systems in Additive White Gaussian Noise (AWGN) channel, Fountain code is introduced to the DFH systems as the outer error correcting code in this paper to investigate the improvements against partial-band jamming over AWGN channel. The performance of Fountain coded DFH is theoretically analyzed and numerically simulated. The total frequency of hopping in the simulation is 16, and results show that, on one hand, when exact jamming state information (JSI) is available, and the number of jamming frequency is n= 16, the bit error rate (BER) of 10~3 is achieved with the signal to interference ratio (SIR) approximately 7.5 dB over AWGN channel, and the performance improves about 1-1.5dB compared with the no-coded system. When the number of jamming frequency is n=2, the performance increases 15-17dB. On the other hand, when JSI is unavailable, a joint JSI estimation and decoding algorithm is proposed. The BER of 10 3 is achieved with jamming-frequency n 16, SIR=8dB and signal noise ratio (SNR) 10dB over AWGN channel. It's proved that this algorithm provides robust anti-jamming pertbrmance even without JSI. The anti-jamming performance of Fountain coded DFH systems is obviously superior to no-coded DFH systems.展开更多
Reliable, with high data rate, acoustic communication in time-valTing, multipath shallow water environment is a hot research topic recently. Passive time reversal communication has shown promising results in improveme...Reliable, with high data rate, acoustic communication in time-valTing, multipath shallow water environment is a hot research topic recently. Passive time reversal communication has shown promising results in improvement of the system performance. In multiuser environment, the system performance is significantly degraded due to the interference among different users. Passive time reversal can reduce such interference by minimizing the cross-correlated version of channel impulse response among users, which can be realized by the well-separated users in depth. But this method also has its shortcomings, even with the absence of relative motion, the minimization sometimes may be impossible because of the time-varying environment. Therefore in order to avoid the limitation of minimizing the cross-correlated channel function, an approach of passive time reversal based on space-time block coding (STBC) is presented in this paper. In addition, a single channel equalizer is used as a pest processing technique to reduce the residual symbol interference. Experimental results at 13 kHz with 2 kHz bandwidth demonstrate that this method has better performance to decrease bit error rate and improve signal to noise ratio, compared with passive time reversal alone or passive time reversal combined with equalization.展开更多
The space-time spreading (SIS), superimposed training sequences and space-time coding (STC) are adopted to obtain a closed-form of average error probability upper bound and maximum likelihood esti- mation expressi...The space-time spreading (SIS), superimposed training sequences and space-time coding (STC) are adopted to obtain a closed-form of average error probability upper bound and maximum likelihood esti- mation expression for multiple input and multiple output (MIMO) correlated frequency-selective channel in the presence of interference (colored interference). Moreover, the correlation at both ends of the wire- less link that can be incorporated equivalently into correlation at the transmit end is derived. Finally, the mean square error (MSE) of the maximum likelihood estimate is also derived.展开更多
基金Project supported by the Hi-Tech Research and Development Pro-gram (863) of China (No. 2003AA123310) and the National Natural Science Foundation of China (No. 60272079)
文摘Differential space-time coding was proposed recently in the literature for multi-antenna systems, where neither the transmitter nor the receiver knows the fading coefficients. Among existing schemes, double differential space-time (DDST) coding is of special interest because it is applicable to continuous fast time-varying channels. However, it is less effective in fre- quency-selective fading channels. This paper’s authors derived a novel time-frequency double differential space-time (TF-DDST) coding scheme for multi-antenna orthogonal frequency division multiplexing (OFDM) systems in a time-varying fre- quency-selective fading environment, where double differential space-time coding is introduced into both time domain and fre- quency domain. Our proposed TF-DDST-OFDM system has a low-complexity non-coherent decoding scheme and is robust for time- and frequency-selective Rayleigh fading. In this paper, we also propose the use of state-of-the-art low-density parity-check (LDPC) code in serial concatenation with our TF-DDST scheme as a channel code. Simulations revealed that the LDPC based TF-DDST OFDM system has low decoding complexity and relatively better performance.
基金supported by the Shenzhen sustainable development project:KCXFZ 20201221173013036 and the National Natural Science Foundation of China(91746107).
文摘In this paper,we mainly discuss a discrete estimation of the average differential entropy for a continuous time-stationary ergodic space-time random field.By estimating the probability value of a time-stationary random field in a small range,we give an entropy estimation and obtain the average entropy estimation formula in a certain bounded space region.It can be proven that the estimation of the average differential entropy converges to the theoretical value with a probability of 1.In addition,we also conducted numerical experiments for different parameters to verify the convergence result obtained in the theoretical proofs.
基金This project was supported by the National Natural Science Foundation of China (60172018) .
文摘A differential modulation scheme using space-time block codes is put forward. Compared with other schemes, our scheme has lower computational complexity and has a simpler decoder. In the case of three or four transmitter antennas, our scheme has a higher rate a higher coding gain and a lower bit error rate for a given rate. Then we made simulations for space-time block codes as well as group codes in the case of two, three, four and five transmit antennas. The simulations prove that using two transmit antennas, one receive antenna and code rate of 4 bits/s/Hz, the differential STBC method outperform the differential group codes method by 4 dB. Useing three, four and five transmit antennas, one receive antenna, and code rate of 3 bits/s/Hz are adopted, the differential STBC method outperform the differential group codes method by 5 dB, 6. 5 dB and 7 dB, respectively. In other words, the differential modulation scheme based on space-time block code is better than the corresponding differential modulation scheme
基金The National Natural Science Foundation of China(No60572072,60496311)the National High Technology Research and Development Program of China (863Program) (No2006AA01Z264)+1 种基金the National Basic Research Program of China (973Program) (No2007CB310603)the PhD Programs Foundation of Ministry of Educa-tion of China (No20060286016)
文摘The performance loss of an approximately 3 dB signal-to-noise ratio is always paid with conventional differential detection compared to the related coherent detection. A new detection scheme consisting of two steps is proposed for the differential unitary space-time modulation (DUSTM) system. In the first step, the data sequence is estimated by conventional unitary space-time demodulation (DUSTD) and differentially encoded again to produce an initial estimate of the transmitted symbol stream. In the second step, the initial estimate of the symbol stream is utilized to initialize an expectation maximization (EM)-based iterative detector. In each iteration, the most recent detected symbol stream is employed to estimate the channel, which is then used to implement coherent sequence detection to refine the symbol stream. Simulation results show that the proposed detection scheme performs much better than the conventional DUSTD after several iterations.
基金Supported by the National Natural Science Foundation of China (No.60372055)National High Technology Research and Development Project of China (No.2003AA123320)the National Doctoral Foundation of China (No.20020698024,No.20030698027).
文摘Based on the Complex Orthogonal Linear Dispersion (COLD) code,a novel linear Differ- ential Space-Time Modulation (DSTM) design is proposed in this paper.Compared with the existing nonlinear DSTM schemes based on group codes,the proposed linear DSTM scheme is easier to design, enjoys full diversity and allows for a simplified differential receiver,which can detect the transmitted symbols separately.Furthermore,compared with the existing linear DSTM based on orthogonal design, our new construction can be applied to any number of transmit antennas.Similar to other algorithms, the proposed scheme also can be demodulated with or without channel estimates at the receiver,but the performance degrades approximately by 3dB when estimates are not available.
基金Supported bv the National Nature Science Foundation of China ( No. 603905405 ). and the National High Teehnology Research & Development Program of China (No. 2003AA12331005).
文摘Previously proposed differential modulation schemes for time-varying channels may not achieve the full transmit diversity and the maximum Doppler diversity simultaneously. Based on an existing basis expansion model, a new differential space-time code, which wisely combines interleaver/de-interleaver with traditonal space-time transmitting technique to overcome such limitation, .is presented. Two noncoherent differential decoders, named decision-feedback differential detector (DF-DD) and Viterbi-algorithmbased multiple-symbol-detection differential detector ( MSD-DD), are also derived. We show that our design may recover data symbols with full antenna diversity and the maximum Doppler diversity at high signal-to-noise ratio. System performance is evaluated with simulations.
文摘Differential space-time (DST) modulation has been proposed recently for multiple-antenna systems over Rayleigh fading channels, where neither the transmitter nor the receiver knows the fading coefficients. Among existing schemes, differential modulation is always performed in the time domain and suffers performance degradations in frequency-selective fading channels. In order to combat the fast time and frequency-selective fading, a novel time-frequency differential space-time (TF-DST) modulation scheme, which adopts differential modulation in both time and frequency domains, is proposed for multi-antenna orthogonal frequency division multiplexing (OFDM) system. A corresponding suboptimal yet low-complexity non-coherent detection approach is also proposed. Simulation results demonstrate that the proposed system is robust for time and frequency-selective Rayleigh fading channels.
基金Supported by the National Natural Science Foundation of China (No.60572148).
文摘Two reduced-complexity decoding algorithms for unitary space-time codes based on tree-structured constellation are presented. In this letter original unitary space-time constellation is divided into several groups. Each one is treated as the leaf nodes set of a subtree. Choosing the unitary signals that represent each group as the roots of these subtrees generates a tree-structured constellation. The proposed tree search decoder decides to which sub tree the receive signal belongs by searching in the set of subtree roots. The final decision is made after a local search in the leaf nodes set of the se-lected sub tree. The adjacent subtree joint decoder performs joint search in the selected sub tree and its “surrounding” subtrees,which improves the Bit Error Rate (BER) performance of purely tree search method. The exhaustively search in the whole constellation is avoided in our proposed decoding al-gorithms,a lower complexity is obtained compared to that of Maximum Likelihood (ML) decoding. Simulation results have also been provided to demonstrate the feasibility of these new methods.
基金Supported by the National Natural Science Foundation of China (No.60402014), and the Doctoral Program Fund of China (No.20010561007).
文摘A new constellation which is the multiplication of the rotation matrix and the diagonal matrix ac- cording to the number of transmitters is proposed to increase the diversity product, the key property to the performance of the differential unitary space-time modulation. Analyses and the simulation results show that the proposed constellation performs better and 2dB or more coding gain can be achieved over the traditional cyclic constellation.
基金Supported by Chinese 863 project (No.2001 AA 123042).
文摘Space-Time Block (STB) code has been an effective transmit diversity technique for combating fading due to its orthogonal design, simple decoding and high diversity gains. In this paper, a unit-rate complex orthogonal STB code for multiple antennas in Time Division Duplex (TDD) mode is proposed. Meanwhile, Turbo Coding (TC) is employed to improve the performance of proposed STB code further by utilizing its good ability to combat the burst error of fading channel. Compared with full-diversity multiple antennas STB codes, the proposed code can implement unit rate and partial diversity; and it has much smaller computational complexity under the same system throughput. Moreover, the application of TC can effectively make up for the performance loss due to partial diversity. Simulation results show that on the condition of same system throughput and concatenation of TC, the proposed code has lower Bit Error Rate (BER) than those full-diversity codes.
基金the National High Technology Research and Development Programme of China(No.2006AA123320)
文摘Differential modulation was widely used for wireless networks in which channel estimation was diffi-cult.Based on orthogonal design,a novel distributed differential space-time coding/decoding scheme forM-PSK modulations was proposed,which had a high code rate of 2/3 and second-order diversity for thetwo-user cooperative networks.The performance of decode-and-forward (DF) protocols was evaluated.Simulations show that the differential space-time modulation scheme in this paper has better bit error rate(BER) performance or higher code rate than the schemes proposed by Tarasak and Wang when interuserchannel states are good enough.The impacts of transmission error between two users for the whole systemBER performance were also investigated.
基金Supported by the High Technology Research and Development Program of China (No. 2003AA12331007 ) and National Natural Science Foundation of China ( No. 60272079).
文摘Differential unitary space-time modulation (DUSTM), which obtains full transmit diversity in slowly fiat-fading channels without channel state iufonnation, has generated significant interests recently. To combat frequency-selective fading, DUSTM has been applied to each subcarrier of an OFDM system and DUSTM-OFDM system was proposed. Both DUSTM and DUSTM-OFDM, however, are designed for slowly fading channels and suffer performance deterioration in fast fading channels. In this paper, two novel differential unitary space-time modulation schemes are proposed for fast fading channels. For fast fiat-fading channels, a subatrix interleaved DUSTM (SMI-DUSTM) scheme is proposed, in which matrix-segmentation and sub-matrix based interleaving are introduced into DUSTM system. For fast frequency-selective fading channels, a differential unitary space-frequency modulation (DUSFM) scheme is proposed, in which existing unitary space-time codes are employed across transmit antennas and OFDM subcarriers simultaneouslv and differential modulation is performed between two adjacent OFDM blocks. Compared with DUSTM and DUSTM-OFDM schemes, SMI-DUSTM and DUSFM-OFDM are more robust to fast channel fading with low decoding complexity, which is demonstrated by performance analysis and simulation resuits.
文摘In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.
基金Supported by the National Natural Science Foundation of China (No.60772062)the National Basic Research Pro-gram of China (No.2007CB310607)the Natural Science Research Fund of Jiangsu University (No. 05 KJB 510090)
文摘In this paper, the design of signal constellations parameters is studied for Differential Unitary Space-Time Modulation (DUSTM) based on the design criterion of maximizing the diversity product. Further, noninteger searching method for the signal constellation parameters design is proposed in order to get better codes. Experimental results show that under the different Doppler spread and data transmission rate, the proposed design performs better than the previous design using integer parameters in Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) system over frequency-selective fading channels.
文摘A new scheme combining a scalable transcoder with space time block codes (STBC) for an orthogonal frequency division multiplexing (OFDM) system is proposed for robust video transmission in dispersive fading channels. The target application for such a scalable transcoder is to provide successful access to the pre-encoded high quality video MPEG-2 from mobile wireless terminals. In the scalable transcoder, besides outputting the MPEG-4 fine granular scalability (FGS) bitstream, both the size of video frames and the bit rate are reduced. And an array processing algorithm of layer interference suppression is used at the receiver which makes the system structure provide different levels of protection to different layers. Furthermore, by considering the important level of scalable bitstream, the different bitstreams can be given different level protection by the system structure and channel coding. With the proposed system, the concurrent large diversity gain characteristic of STBC and alleviation of the frequency-selective fading effect of OFDM can be achieved. The simulation results show that the proposed schemes integrating scalable transcoding can provide a basic quality of video transmission and outperform the conventional single layer transcoding transmitted under the random and bursty error channel conditions.
文摘A design of super-orthogonal space-time trellis codes (SOSTTCs) based on the trace criterion (TC) is proposed for improving the design of SOSTTCs. The shortcomings of the rank and determinant criteria based design and the advantages of the TC-based design are analyzed. The optimization principle of four factors is presented, which includes the space-time block coding (STBC) scheme, set partitioning, trellis structure, and the assignment of signal subsets and STBC schemes in the trellis. According to this principle, systematical and handcrafted design steps are given in detail. By constellation expansion, the code performance can be further improved. The code design results are given, and the new codes outperform others in the simulation.
文摘A method of space-time block coding (STBC) system based on adaptive beamforming of cyclostationarity signal algorithm is proposed.The method uses cyclostationarity of signals to achieve adaptive beamforming,then constructs a pair of low correlated transmit beams based on beamform estimation of multiple component signals of uplink.Using these two selected transmit beams,signals encoded by STBC are transmitted to achieve diversity gain and beamforming gain at the same time,and increase the signal to noise ratio (SNR) of downlink.With simple computation and fast convergence performance,the proposed scheme is applicable for time division multiple access (TDMA) wireless communication operated in a complex interference environment.Simulation results show that the proposed scheme has better performance than conventional STBC,and can obtain a gain of about 5 dB when the bit error ratio (BER) is 10-4.
基金the National Natural Science Foundation of China under Grant 61371125
文摘Based on the anti-jamming performance of differential frequency hopping (DFH) systems in Additive White Gaussian Noise (AWGN) channel, Fountain code is introduced to the DFH systems as the outer error correcting code in this paper to investigate the improvements against partial-band jamming over AWGN channel. The performance of Fountain coded DFH is theoretically analyzed and numerically simulated. The total frequency of hopping in the simulation is 16, and results show that, on one hand, when exact jamming state information (JSI) is available, and the number of jamming frequency is n= 16, the bit error rate (BER) of 10~3 is achieved with the signal to interference ratio (SIR) approximately 7.5 dB over AWGN channel, and the performance improves about 1-1.5dB compared with the no-coded system. When the number of jamming frequency is n=2, the performance increases 15-17dB. On the other hand, when JSI is unavailable, a joint JSI estimation and decoding algorithm is proposed. The BER of 10 3 is achieved with jamming-frequency n 16, SIR=8dB and signal noise ratio (SNR) 10dB over AWGN channel. It's proved that this algorithm provides robust anti-jamming pertbrmance even without JSI. The anti-jamming performance of Fountain coded DFH systems is obviously superior to no-coded DFH systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.60772094 and 60872066)
文摘Reliable, with high data rate, acoustic communication in time-valTing, multipath shallow water environment is a hot research topic recently. Passive time reversal communication has shown promising results in improvement of the system performance. In multiuser environment, the system performance is significantly degraded due to the interference among different users. Passive time reversal can reduce such interference by minimizing the cross-correlated version of channel impulse response among users, which can be realized by the well-separated users in depth. But this method also has its shortcomings, even with the absence of relative motion, the minimization sometimes may be impossible because of the time-varying environment. Therefore in order to avoid the limitation of minimizing the cross-correlated channel function, an approach of passive time reversal based on space-time block coding (STBC) is presented in this paper. In addition, a single channel equalizer is used as a pest processing technique to reduce the residual symbol interference. Experimental results at 13 kHz with 2 kHz bandwidth demonstrate that this method has better performance to decrease bit error rate and improve signal to noise ratio, compared with passive time reversal alone or passive time reversal combined with equalization.
基金the National High Technology Research and Development Program of China(2002AA123032)
文摘The space-time spreading (SIS), superimposed training sequences and space-time coding (STC) are adopted to obtain a closed-form of average error probability upper bound and maximum likelihood esti- mation expression for multiple input and multiple output (MIMO) correlated frequency-selective channel in the presence of interference (colored interference). Moreover, the correlation at both ends of the wire- less link that can be incorporated equivalently into correlation at the transmit end is derived. Finally, the mean square error (MSE) of the maximum likelihood estimate is also derived.