In this paper,a differential scheme is proposed for reconfigurable intelligent surface(RIS)assisted spatial modulation,which is referred to as RISDSM,to eliminate the need for channel state information(CSI)at the rece...In this paper,a differential scheme is proposed for reconfigurable intelligent surface(RIS)assisted spatial modulation,which is referred to as RISDSM,to eliminate the need for channel state information(CSI)at the receiver.The proposed scheme is an improvement over the current differential modulation scheme used in RIS-based systems,as it avoids the high-order matrix calculation and improves the spectral efficiency.A mathematical framework is developed to determine the theoretical average bit error probability(ABEP)of the system using RIS-DSM.The detection complexity of the proposed RIS-DSM scheme is extremely low through the simplification.Finally,simulations results demonstrate that the proposed RIS-DSM scheme can deliver satisfactory error performance even in low signal-to-noise ratio environments.展开更多
This paper investigates secure transmission in a wireless powered communication network(WPCN)with an energy harvesting(EH)source configured with multiple antennas.In the WPCN,the EH source harvests energy from the rad...This paper investigates secure transmission in a wireless powered communication network(WPCN)with an energy harvesting(EH)source configured with multiple antennas.In the WPCN,the EH source harvests energy from the radio frequency(RF)signals broadcasted by a power beacon(PB),and purely relies on the harvested energy to communicate with the destination in the presence of passive eavesdroppers.It is noteworthy that the RF-EH source is equipped with a finite energy storage to accumulate the harvested energy for the future usage.Moreover,due to energy-constraint and complexitylimitation,the multi-antenna source is only configured with a single RF-chain.To enhance the security for the WPCN,we propose two adaptive transmission schemes,i.e.,energy-aware transmit antenna selection(EATAS)and energy-aware differential spatial modulation(EADSM).According to the energy status and the channel quality,the source adaptively decides whether to transmit confidential information or harvest RF energy.To evaluate the secrecy performance of the proposed schemes,we first study the evolution of the energy storage,and then derive the analytical expressions of connection outage probability(COP),secrecy outage probability(SOP)and efficient secrecy throughput(EST).Numerical results demonstrate that our proposed schemes outperform the existing schemes,i.e.,time-switching based TAS(TS-TAS)Received:May 19,2020 Revised:Sep.13,2020 Editor:Deli Qiao and accumulate-then-transmit(ATT).And,increasing the transmit power of the PB or the capacity of the source’s energy storage is helpful to improve the secrecy performance.Moreover,there exists an optimal transmission rate for each proposed scheme to achieve best secrecy performance.展开更多
差分空间调制(Differential Spatial Modulation,DSM)是一种多天线差分空间调制技术,具有低功耗低复杂度且无需信道估计的特点,适用于高速移动且对功耗和复杂度要求较高的物联网、6G等通信系统。由于DSM发射信号存在稀疏结构和需要满足...差分空间调制(Differential Spatial Modulation,DSM)是一种多天线差分空间调制技术,具有低功耗低复杂度且无需信道估计的特点,适用于高速移动且对功耗和复杂度要求较高的物联网、6G等通信系统。由于DSM发射信号存在稀疏结构和需要满足差分编码等要求,限制了系统频谱效率的提升。因此,为了提高DSM系统的传输速率,将媒介调制(Media-Based Modulation,MBM)技术引入差分系统,提出了差分空时媒介调制(Differential Space Time Media-Based Modulation,DST-MBM)系统,在保留DSM固有优势的同时,通过射频镜(Radio Frequency Mirror,RFM)传递额外的信息比特,极大提高了传输效率。展开更多
基金supported by National Natural Science Foundation of China(No.61801106).
文摘In this paper,a differential scheme is proposed for reconfigurable intelligent surface(RIS)assisted spatial modulation,which is referred to as RISDSM,to eliminate the need for channel state information(CSI)at the receiver.The proposed scheme is an improvement over the current differential modulation scheme used in RIS-based systems,as it avoids the high-order matrix calculation and improves the spectral efficiency.A mathematical framework is developed to determine the theoretical average bit error probability(ABEP)of the system using RIS-DSM.The detection complexity of the proposed RIS-DSM scheme is extremely low through the simplification.Finally,simulations results demonstrate that the proposed RIS-DSM scheme can deliver satisfactory error performance even in low signal-to-noise ratio environments.
基金supported in part by the National Science Foundations of China under Grant 61801496 and 61801497the Defense Science Foundations of China under Grant 2019-JCJQ-JJ-221the National University of Defense Technology Youth Innovation Award Research Project under Grant 23200306。
文摘This paper investigates secure transmission in a wireless powered communication network(WPCN)with an energy harvesting(EH)source configured with multiple antennas.In the WPCN,the EH source harvests energy from the radio frequency(RF)signals broadcasted by a power beacon(PB),and purely relies on the harvested energy to communicate with the destination in the presence of passive eavesdroppers.It is noteworthy that the RF-EH source is equipped with a finite energy storage to accumulate the harvested energy for the future usage.Moreover,due to energy-constraint and complexitylimitation,the multi-antenna source is only configured with a single RF-chain.To enhance the security for the WPCN,we propose two adaptive transmission schemes,i.e.,energy-aware transmit antenna selection(EATAS)and energy-aware differential spatial modulation(EADSM).According to the energy status and the channel quality,the source adaptively decides whether to transmit confidential information or harvest RF energy.To evaluate the secrecy performance of the proposed schemes,we first study the evolution of the energy storage,and then derive the analytical expressions of connection outage probability(COP),secrecy outage probability(SOP)and efficient secrecy throughput(EST).Numerical results demonstrate that our proposed schemes outperform the existing schemes,i.e.,time-switching based TAS(TS-TAS)Received:May 19,2020 Revised:Sep.13,2020 Editor:Deli Qiao and accumulate-then-transmit(ATT).And,increasing the transmit power of the PB or the capacity of the source’s energy storage is helpful to improve the secrecy performance.Moreover,there exists an optimal transmission rate for each proposed scheme to achieve best secrecy performance.
文摘差分空间调制(Differential Spatial Modulation,DSM)是一种多天线差分空间调制技术,具有低功耗低复杂度且无需信道估计的特点,适用于高速移动且对功耗和复杂度要求较高的物联网、6G等通信系统。由于DSM发射信号存在稀疏结构和需要满足差分编码等要求,限制了系统频谱效率的提升。因此,为了提高DSM系统的传输速率,将媒介调制(Media-Based Modulation,MBM)技术引入差分系统,提出了差分空时媒介调制(Differential Space Time Media-Based Modulation,DST-MBM)系统,在保留DSM固有优势的同时,通过射频镜(Radio Frequency Mirror,RFM)传递额外的信息比特,极大提高了传输效率。