The precipitation kinetics of 2519 A aluminum alloy after different cold rolling reductions before aging was investigated by hardness test and differential scanning calorimetry(DSC). The activation energy was calcul...The precipitation kinetics of 2519 A aluminum alloy after different cold rolling reductions before aging was investigated by hardness test and differential scanning calorimetry(DSC). The activation energy was calculated according to DSC curves using single heating rate method. The microstructures of as-rolled and peak-aged alloys were observed by transmission electron microscopy(TEM). The result shows that the age hardenability reduces and the activation energy rises with increasing the reduction from 7% to 40%. Nonuniform dislocations are found in as-rolled alloy and inhomogeneous distribution of θ′ phase is revealed in peak-aged alloy when the reduction is 15%. The inhomogeneous distribution of θ′ phase may be related to the age hardenability reducing and activation energy rising.展开更多
基金Project(2012CB619500)supported by the National Basic Research Program of China
文摘The precipitation kinetics of 2519 A aluminum alloy after different cold rolling reductions before aging was investigated by hardness test and differential scanning calorimetry(DSC). The activation energy was calculated according to DSC curves using single heating rate method. The microstructures of as-rolled and peak-aged alloys were observed by transmission electron microscopy(TEM). The result shows that the age hardenability reduces and the activation energy rises with increasing the reduction from 7% to 40%. Nonuniform dislocations are found in as-rolled alloy and inhomogeneous distribution of θ′ phase is revealed in peak-aged alloy when the reduction is 15%. The inhomogeneous distribution of θ′ phase may be related to the age hardenability reducing and activation energy rising.