期刊文献+
共找到1,873篇文章
< 1 2 94 >
每页显示 20 50 100
An Adaptive Time-Step Backward Differentiation Algorithm to Solve Stiff Ordinary Differential Equations: Application to Solve Activated Sludge Models 被引量:2
1
作者 Jamal Alikhani Bahareh Shoghli +1 位作者 Ujjal Kumar Bhowmik Arash Massoudieh 《American Journal of Computational Mathematics》 2016年第4期298-312,共15页
A backward differentiation formula (BDF) has been shown to be an effective way to solve a system of ordinary differential equations (ODEs) that have some degree of stiffness. However, sometimes, due to high-frequency ... A backward differentiation formula (BDF) has been shown to be an effective way to solve a system of ordinary differential equations (ODEs) that have some degree of stiffness. However, sometimes, due to high-frequency variations in the external time series of boundary conditions, a small time-step is required to solve the ODE system throughout the entire simulation period, which can lead to a high computational cost, slower response, and need for more memory resources. One possible strategy to overcome this problem is to dynamically adjust the time-step with respect to the system’s stiffness. Therefore, small time-steps can be applied when needed, and larger time-steps can be used when allowable. This paper presents a new algorithm for adjusting the dynamic time-step based on a BDF discretization method. The parameters used to dynamically adjust the size of the time-step can be optimally specified to result in a minimum computation time and reasonable accuracy for a particular case of ODEs. The proposed algorithm was applied to solve the system of ODEs obtained from an activated sludge model (ASM) for biological wastewater treatment processes. The algorithm was tested for various solver parameters, and the optimum set of three adjustable parameters that represented minimum computation time was identified. In addition, the accuracy of the algorithm was evaluated for various sets of solver parameters. 展开更多
关键词 Adaptive Time-Step Backward differentiation Formula Activated Sludge Model Ordinary Differential equation Stiffness Computation Time
下载PDF
Prediction of ILI following the COVID-19 pandemic in China by using a partial differential equation
2
作者 Xu Zhang Yu-Rong Song Ru-Qi Li 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期118-128,共11页
The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory in... The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory infections,such as influenza-like illness(ILI).Accurate prediction models for ILI cases are crucial in enabling governments to implement necessary measures and persuade individuals to adopt personal precautions against the disease.This paper aims to provide a forecasting model for ILI cases with actual cases.We propose a specific model utilizing the partial differential equation(PDE)that will be developed and validated using real-world data obtained from the Chinese National Influenza Center.Our model combines the effects of transboundary spread among regions in China mainland and human activities’impact on ILI transmission dynamics.The simulated results demonstrate that our model achieves excellent predictive performance.Additionally,relevant factors influencing the dissemination are further examined in our analysis.Furthermore,we investigate the effectiveness of travel restrictions on ILI cases.Results can be used to utilize to mitigate the spread of disease. 展开更多
关键词 partial differential equations INFLUENZA SIS model PREDICTION
下载PDF
THE EXACT MEROMORPHIC SOLUTIONS OF SOME NONLINEAR DIFFERENTIAL EQUATIONS
3
作者 刘慧芳 毛志强 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期103-114,共12页
We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Co... We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Compared with previous results on the equation p(z)f^(3)+q(z)f"=-sinα(z)with polynomial coefficients,our results show that the coefficient of the term f^((k))perturbed by multiplying an exponential function will affect the structure of its solutions. 展开更多
关键词 Nevanlinna theory nonlinear differential equations meromorphic functions entire functions
下载PDF
Continuous-Time Channel Prediction Based on Tensor Neural Ordinary Differential Equation
4
作者 Mingyao Cui Hao Jiang +2 位作者 Yuhao Chen Yang Du Linglong Dai 《China Communications》 SCIE CSCD 2024年第1期163-174,共12页
Channel prediction is critical to address the channel aging issue in mobile scenarios.Existing channel prediction techniques are mainly designed for discrete channel prediction,which can only predict the future channe... Channel prediction is critical to address the channel aging issue in mobile scenarios.Existing channel prediction techniques are mainly designed for discrete channel prediction,which can only predict the future channel in a fixed time slot per frame,while the other intra-frame channels are usually recovered by interpolation.However,these approaches suffer from a serious interpolation loss,especially for mobile millimeter-wave communications.To solve this challenging problem,we propose a tensor neural ordinary differential equation(TN-ODE)based continuous-time channel prediction scheme to realize the direct prediction of intra-frame channels.Specifically,inspired by the recently developed continuous mapping model named neural ODE in the field of machine learning,we first utilize the neural ODE model to predict future continuous-time channels.To improve the channel prediction accuracy and reduce computational complexity,we then propose the TN-ODE scheme to learn the structural characteristics of the high-dimensional channel by low-dimensional learnable transform.Simulation results show that the proposed scheme is able to achieve higher intra-frame channel prediction accuracy than existing schemes. 展开更多
关键词 channel prediction massive multipleinput-multiple-output millimeter-wave communications ordinary differential equation
下载PDF
Results Involving Partial Differential Equations and Their Solution by Certain Integral Transform
5
作者 Rania Saadah Mohammed Amleh +2 位作者 Ahmad Qazza Shrideh Al-Omari Ahmet Ocak Akdemir 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1593-1616,共24页
In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, exi... In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, existence, scaling andshifting, etc. Then,we derive several results enfolding partial derivatives and establish amulti-convolution theorem.Further, we apply the aforementioned transform to some classical functions and many types of partial differentialequations involving heat equations,wave equations, Laplace equations, and Poisson equations aswell.Moreover,wedraw some figures to illustrate 3-D contour plots for exact solutions of some selected examples involving differentvalues in their variables. 展开更多
关键词 ARA transform double ARA transform triple ARA transform partial differential equations integral transform
下载PDF
A Collocation Technique via Pell-Lucas Polynomials to Solve Fractional Differential EquationModel for HIV/AIDS with Treatment Compartment
6
作者 Gamze Yıldırım Suayip Yüzbası 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期281-310,共30页
In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatmen... In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatment compartment is divided into five classes,namely,susceptible patients(S),HIV-positive individuals(I),individuals with full-blown AIDS but not receiving ARV treatment(A),individuals being treated(T),and individuals who have changed their sexual habits sufficiently(R).According to the method,by utilizing the PLPs and the collocation points,we convert the fractional order HIV/AIDS epidemic model with a treatment compartment into a nonlinear system of the algebraic equations.Also,the error analysis is presented for the Pell-Lucas approximation method.The aim of this study is to observe the behavior of five populations after 200 days when drug treatment is applied to HIV-infectious and full-blown AIDS people.To demonstrate the usefulness of this method,the applications are made on the numerical example with the help of MATLAB.In addition,four cases of the fractional order derivative(p=1,p=0.95,p=0.9,p=0.85)are examined in the range[0,200].Owing to applications,we figured out that the outcomes have quite decent errors.Also,we understand that the errors decrease when the value of N increases.The figures in this study are created in MATLAB.The outcomes indicate that the presented method is reasonably sufficient and correct. 展开更多
关键词 Collocation method fractional differential equations HIV/AIDS epidemic model Pell-Lucas polynomials
下载PDF
Meta-Auto-Decoder:a Meta-Learning-Based Reduced Order Model for Solving Parametric Partial Differential Equations
7
作者 Zhanhong Ye Xiang Huang +1 位作者 Hongsheng Liu Bin Dong 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1096-1130,共35页
Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational... Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational domains,etc.Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the ofline stage.These methods often need a predefined mesh as well as a series of precomputed solution snapshots,and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz.Utilizing the nonlinear representation of neural networks(NNs),we propose the Meta-Auto-Decoder(MAD)to construct a nonlinear trial manifold,whose best possible performance is measured theoretically by the decoder width.Based on the meta-learning concept,the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage.Fast adaptation to new(possibly heterogeneous)PDE parameters is enabled by searching on this trial manifold,and optionally fine-tuning the trial manifold at the same time.Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods. 展开更多
关键词 Parametric partial differential equations(PDEs) META-LEARNING Reduced order modeling Neural networks(NNs) Auto-decoder
下载PDF
Pseudo S-Asymptotically(ω,c)-Periodic Solutions to Fractional Differential Equations of Sobolev Type
8
作者 MAO Hang-ning CHANG Yong-kui 《Chinese Quarterly Journal of Mathematics》 2024年第3期295-306,共12页
In this paper,we firstly recall some basic results on pseudo S-asymptotically(ω,c)-periodic functions and Sobolev type fractional differential equation.We secondly investigate some existence of pseudo S-asymptotical... In this paper,we firstly recall some basic results on pseudo S-asymptotically(ω,c)-periodic functions and Sobolev type fractional differential equation.We secondly investigate some existence of pseudo S-asymptotically(ω,c)-periodic solutions for a semilinear fractional differential equations of Sobolev type.We finally present a simple example. 展开更多
关键词 Pseudo S-asymptotically(ω c)-periodic functions Evolution equations Sobolev type Fractional differential equations Existence and uniqueness
下载PDF
Research on Carbon Emission for Preventive Maintenance of Wind Turbine Gearbox Based on Stochastic Differential Equation
9
作者 Hongsheng Su Lixia Dong +1 位作者 Xiaoying Yu Kai Liu 《Energy Engineering》 EI 2024年第4期973-986,共14页
Time based maintenance(TBM)and condition based maintenance(CBM)are widely applied in many large wind farms to optimize the maintenance issues of wind turbine gearboxes,however,these maintenance strategies do not take ... Time based maintenance(TBM)and condition based maintenance(CBM)are widely applied in many large wind farms to optimize the maintenance issues of wind turbine gearboxes,however,these maintenance strategies do not take into account environmental benefits during full life cycle such as carbon emissions issues.Hence,this article proposes a carbon emissions computing model for preventive maintenance activities of wind turbine gearboxes to solve the issue.Based on the change of the gearbox state during operation and the influence of external random factors on the gearbox state,a stochastic differential equation model(SDE)and corresponding carbon emission model are established,wherein SDE is applied to model the evolution of the device state,whereas carbon emission is used to implement carbon emissions computing.The simulation results indicate that the proposed preventive maintenance cannot ensure reliable operation of wind turbine gearboxes but reduce carbon emissions during their lifespan.Compared with TBM,CBM minimizes unit carbon emissions without influencing reliable operation,making it an effective maintenance method. 展开更多
关键词 Stochastic differential equation(SDE) condition-based maintenance(CBM) carbon emissions
下载PDF
New Numerical Integration Formulations for Ordinary Differential Equations
10
作者 Serdar Beji 《Advances in Pure Mathematics》 2024年第8期650-666,共17页
An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions ... An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions with trigonometric and exponential terms satisfying different conditions are employed to generate a number of formulations. Performances of the new schemes are tested against well-known numerical integrators for selected test cases with quite satisfactory results. Convergence and stability issues of the new formulations are not addressed as the treatment of these aspects requires a separate work. The general approach introduced herein opens a wide vista for producing virtually unlimited number of formulations. 展开更多
关键词 Single- and Multi-Step Numerical Integration Unconventional Base-Functions Ordinary Differential equations
下载PDF
The Jaffa Transform for Hessian Matrix Systems and the Laplace Equation
11
作者 Daniel A. Jaffa 《Journal of Applied Mathematics and Physics》 2024年第1期98-125,共28页
Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of ... Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of linear second-order partial differential equations. This paper discusses the Hessian and its applications in optimization, and then proceeds to introduce and derive the notion of the Jaffa Transform, a new linear operator that directly maps a Hessian square matrix space to the initial corresponding scalar field in nth dimensional Euclidean space. The Jaffa Transform is examined, including the properties of the operator, the transform of notable matrices, and the existence of an inverse Jaffa Transform, which is, by definition, the Hessian matrix operator. The Laplace equation is then noted and investigated, particularly, the relation of the Laplace equation to Poisson’s equation, and the theoretical applications and correlations of harmonic functions to Hessian matrices. The paper concludes by introducing and explicating the Jaffa Theorem, a principle that declares the existence of harmonic Jaffa Transforms, which are, essentially, Jaffa Transform solutions to the Laplace partial differential equation. 展开更多
关键词 Hessian Matrices Jacobian Matrices Laplace equation Linear Partial Differential equations Systems of Partial Differential equations Harmonic Functions Incompressible and Irrotational Fluid Mechanics
下载PDF
Comparative Studies between Picard’s and Taylor’s Methods of Numerical Solutions of First Ordinary Order Differential Equations Arising from Real-Life Problems
12
作者 Khalid Abd Elrazig Awad Alla Elnour 《Journal of Applied Mathematics and Physics》 2024年第3期877-896,共20页
To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’... To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section. 展开更多
关键词 First-Order Differential equations Picard Method Taylor Series Method Numerical Solutions Numerical Examples MATLAB Software
下载PDF
A Comparative Study of Adomian Decomposition Method with Variational Iteration Method for Solving Linear and Nonlinear Differential Equations
13
作者 Sarah Khaled Al Baghdadi N. Ameer Ahammad 《Journal of Applied Mathematics and Physics》 2024年第8期2789-2819,共31页
This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dyna... This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dynamic systems in various disciplines, including biological processes, heat transfer, and control systems. This study addresses first, second, and third-order nonlinear differential equations using Mathematica for data generation and graphing. The ADM, developed by George Adomian, uses Adomian polynomials to handle nonlinear terms, which can be computationally intensive. In contrast, VIM, developed by He, directly iterates the correction functional, providing a more straightforward and efficient approach. This study highlights VIM’s rapid convergence and effectiveness of VIM, particularly for nonlinear problems, where it simplifies calculations and offers direct solutions without polynomial derivation. The results demonstrate VIM’s superior efficiency and rapid convergence of VIM compared with ADM. The VIM’s minimal computational requirements make it practical for real-time applications and complex system modeling. Our findings align with those of previous research, confirming VIM’s efficiency of VIM in various engineering applications. This study emphasizes the importance of selecting appropriate methods based on specific problem requirements. While ADM is valuable for certain nonlinearities, VIM’s approach is ideal for many engineering scenarios. Future research should explore broader applications and hybrid methods to enhance the solution’s accuracy and efficiency. This comprehensive comparison provides valuable guidance for selecting effective numerical methods for differential equations in engineering. 展开更多
关键词 Differential equations Numerical Analysis Mathematical Computing Engineering Models Nonlinear Dynamics
下载PDF
Legendre-Weighted Residual Methods for System of Fractional Order Differential Equations
14
作者 Umme Ruman Md. Shafiqul Islam 《Journal of Applied Mathematics and Physics》 2024年第9期3163-3184,共22页
The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and ... The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations. 展开更多
关键词 Fractional Differential equations System of Fractional Order BVPs Weighted Residual Methods Modified Legendre Polynomials
下载PDF
Thermomechanical Dynamics (TMD) and Bifurcation-Integration Solutions in Nonlinear Differential Equations with Time-Dependent Coefficients
15
作者 Hiroshi Uechi Lisa Uechi Schun T. Uechi 《Journal of Applied Mathematics and Physics》 2024年第5期1733-1743,共11页
The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple ba... The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general. 展开更多
关键词 The Nonlinear Differential equation with Time-Dependent Coefficients The Bifurcation-Integration Solution Nonequilibrium Irreversible States Thermomechanical Dynamics (TMD)
下载PDF
On the growth of transcendental entire solutions of algebraic differential equations 被引量:2
16
作者 朱玲妹 杨德贵 王小灵 《Journal of Southeast University(English Edition)》 EI CAS 2003年第1期98-102,共5页
In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where ... In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where a(z), b_i(z) (0<- i <=2) and d_j (z) (0<=j<= 3) are allpolynomials, and this equation relates closely to the following well-known algebraic differentialequation C(z,w)w'~2 + B(z,w)w' + A(z,w) =0, where G(z,w)not ident to 0, B(z,w) and A(z,w) are threepolynomials in z and w. We give relationships between the growth of entire solutions and the degreesof the above three polynomials in detail. 展开更多
关键词 algebraic differential equation DEGREE entire solutions
下载PDF
Oscillation of Systems of Parabolic Differential Equations with Deviating Arguments 被引量:1
17
作者 邓立虎 王宏洲 葛渭高 《Journal of Beijing Institute of Technology》 EI CAS 2001年第1期12-16,共5页
To study a class of boundary value problems of parabolic differential equations with deviating arguments, averaging technique, Green’s formula and symbol function sign(·) are used. The multi dimensional problem... To study a class of boundary value problems of parabolic differential equations with deviating arguments, averaging technique, Green’s formula and symbol function sign(·) are used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Two oscillatory criteria of solutions for systems of parabolic differential equations with deviating arguments are obtained. 展开更多
关键词 systems of parabolic differential equations boundary value problem deviating arguments OSCILLATION
下载PDF
Asymptotic Stability in the Large of Zero Solution of Second Order Nonlinear Differential Equation 被引量:2
18
作者 王德利 谭远顺 《Chinese Quarterly Journal of Mathematics》 CSCD 2001年第2期13-16,共4页
There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works conc... There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works concern with system which includes more than two terms. In this paper, system which includes four nonlinear terms are studies. We obtain the global asymptotic stability of zero solution, and discard the condition which require the Liapunov function trends to infinity, and only require that the positive orbit is bounded. 展开更多
关键词 nonlinear differential equation zero solution globally asymptotic stability
下载PDF
Bayesian analysis for mixed-effects model defined by stochastic differential equations
19
作者 言方荣 张萍 +1 位作者 陆涛 林金官 《Journal of Southeast University(English Edition)》 EI CAS 2014年第1期122-127,共6页
The nonlinear mixed-effects model with stochastic differential equations (SDEs) is used to model the population pharmacokinetic (PPK) data that are extended from ordinary differential equations (ODEs) by adding ... The nonlinear mixed-effects model with stochastic differential equations (SDEs) is used to model the population pharmacokinetic (PPK) data that are extended from ordinary differential equations (ODEs) by adding a stochastic term to the state equation. Compared with the ODEs, the SDEs can model correlated residuals which are ubiquitous in actual pharmacokinetic problems. The Bayesian estimation is provided for nonlinear mixed-effects models based on stochastic differential equations. Combining the Gibbs and the Metropolis-Hastings algorithms, the population and individual parameter values are given through the parameter posterior predictive distributions. The analysis and simulation results show that the performance of the Bayesian estimation for mixed-effects SDEs model and analysis of population pharmacokinetic data is reliable. The results suggest that the proposed method is feasible for population pharmacokinetic data. 展开更多
关键词 population pharmacokinetics mixed-effectsmodels stochastic differential equations Bayesian analysis
下载PDF
Domain-based noise removal method using fourth-order partial differential equation
20
作者 曾维理 谭湘花 路小波 《Journal of Southeast University(English Edition)》 EI CAS 2011年第2期154-158,共5页
Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the secon... Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the second-order PDE, a domain-based fourth-order PDE method for noise removal is proposed. First, the proposed method segments the image domain into two domains, a speckle domain and a non-speckle domain, based on the statistical properties of isolated speckles in the Laplacian domain. Then, depending on the domain type, different conductance coefficients in the proposed fourth-order PDE are adopted. Moreover, the frequency approach is used to determine the optimum iteration stopping time. Compared with the existing fourth-order PDEs, the proposed fourth-order PDE can remove isolated speckles and keeps the edges from being blurred. Experimental results show the effectiveness of the proposed method. 展开更多
关键词 fourth-order partial differential equation conductance coefficient speckle domain image denoising
下载PDF
上一页 1 2 94 下一页 到第
使用帮助 返回顶部