BACKGROUND Mesenchymal stromal cells(MSCs)are multipotent cell populations obtained from fetal and adult tissues.They share some characteristics with limb bud mesodermal cells such as differentiation potential into os...BACKGROUND Mesenchymal stromal cells(MSCs)are multipotent cell populations obtained from fetal and adult tissues.They share some characteristics with limb bud mesodermal cells such as differentiation potential into osteogenic,chondrogenic,and tenogenic lineages and an embryonic mesodermal origin.Although MSCs differentiate into skeletal-related lineages in vitro,they have not been shown to selforganize into complex skeletal structures or connective tissues,as in the limb.In this work,we demonstrate that the expression of molecular markers to commit MSCs to skeletal lineages is not sufficient to generate skeletal elements in vivo.AIM To evaluate the potential of MSCs to differentiate into skeletal lineages and generate complex skeletal structures using the recombinant limb(RL)system.METHODS We used the experimental system of RLs from dissociated-reaggregated human placenta(PL)and umbilical cord blood(UCB)MSCs.After being harvested and reaggregated in a pellet,cultured cells were introduced into an ectodermal cover obtained from an early chicken limb bud.Next,this filled ectoderm was grafted into the back of a donor chick embryo.Under these conditions,the cells received and responded to the ectoderm’s embryonic signals in a spatiotemporal manner to differentiate and pattern into skeletal elements.Their response to differentiation and morphogenetic signals was evaluated by quantitative poly-merase chain reaction,histology,immunofluorescence,scanning electron microscopy,and in situ hybridization.RESULTS We found that human PL-MSCs and UCB-MSCs constituting the RLs expressed chondrogenic,osteogenic,and tenogenic molecular markers while differentially committing into limb lineages but could not generate complex structures in vivo.MSCs-RL from PL or UCB were committed early to chondrogenic lineage.Nevertheless,the UCB-RL osteogenic commitment was favored,although preferentially to a tenogenic cell fate.These findings suggest that the commitment of MSCs to differentiate into skeletal lineages differs according to the source and is independent of their capacity to generate skeletal elements or connective tissue in vivo.Our results suggest that the failure to form skeletal structures may be due to the intrinsic characteristics of MSCs.Thus,it is necessary to thoroughly evaluate the biological aspects of MSCs and how they respond to morphogenetic signals in an in vivo context.CONCLUSION PL-MSCs and UCB-MSCs express molecular markers of differentiation into skeletal lineages,but they are not sufficient to generate complex skeletal structures in vivo.展开更多
A characteristic of neurological disorders is the loss of critical populations of cells that the body is unable to replace,thus there has been much interest in identifying methods of generating clinically relevant num...A characteristic of neurological disorders is the loss of critical populations of cells that the body is unable to replace,thus there has been much interest in identifying methods of generating clinically relevant numbers of cells to replace those that have been damaged or lost.The process of neural direct conversion,in which cells of one lineage are converted into cells of a neural lineage without first inducing pluripotency,shows great potential,with evidence of the generation of a range of functional neural cell types both in vitro and in vivo,through viral and non-viral delivery of exogenous factors,as well as chemical induction methods.Induced neural cells have been proposed as an attractive alternative to neural cells derived from embryonic or induced pluripotent stem cells,with prospective roles in the investigation of neurological disorders,including neurodegenerative disease modelling,drug screening,and cellular replacement for regenerative medicine applications,however further investigations into improving the efficacy and safety of these methods need to be performed before neural direct conversion becomes a clinically viable option.In this review,we describe the generation of diverse neural cell types via direct conversion of somatic cells,with comparison against stem cell-based approaches,as well as discussion of their potential research and clinical applications.展开更多
基金Supported by the Dirección General de Asuntos del Personal Académico(DGAPA)-Universidad Nacional Autónoma de México,No.IN211117Consejo Nacional de Ciencia y Tecnología(CONACyT),No.1887 CONACyT-Fronteras de la Ciencia awarded to Chimal-Monroy J+1 种基金García-García RD and Garay-Pacheco E received an undergraduate scholarshipMarin-Llera JC a postdoctoral fellowship from the Consejo Nacional de Ciencia y Tecnología,No.CONACyT-Fronteras de la Ciencia-1887.
文摘BACKGROUND Mesenchymal stromal cells(MSCs)are multipotent cell populations obtained from fetal and adult tissues.They share some characteristics with limb bud mesodermal cells such as differentiation potential into osteogenic,chondrogenic,and tenogenic lineages and an embryonic mesodermal origin.Although MSCs differentiate into skeletal-related lineages in vitro,they have not been shown to selforganize into complex skeletal structures or connective tissues,as in the limb.In this work,we demonstrate that the expression of molecular markers to commit MSCs to skeletal lineages is not sufficient to generate skeletal elements in vivo.AIM To evaluate the potential of MSCs to differentiate into skeletal lineages and generate complex skeletal structures using the recombinant limb(RL)system.METHODS We used the experimental system of RLs from dissociated-reaggregated human placenta(PL)and umbilical cord blood(UCB)MSCs.After being harvested and reaggregated in a pellet,cultured cells were introduced into an ectodermal cover obtained from an early chicken limb bud.Next,this filled ectoderm was grafted into the back of a donor chick embryo.Under these conditions,the cells received and responded to the ectoderm’s embryonic signals in a spatiotemporal manner to differentiate and pattern into skeletal elements.Their response to differentiation and morphogenetic signals was evaluated by quantitative poly-merase chain reaction,histology,immunofluorescence,scanning electron microscopy,and in situ hybridization.RESULTS We found that human PL-MSCs and UCB-MSCs constituting the RLs expressed chondrogenic,osteogenic,and tenogenic molecular markers while differentially committing into limb lineages but could not generate complex structures in vivo.MSCs-RL from PL or UCB were committed early to chondrogenic lineage.Nevertheless,the UCB-RL osteogenic commitment was favored,although preferentially to a tenogenic cell fate.These findings suggest that the commitment of MSCs to differentiate into skeletal lineages differs according to the source and is independent of their capacity to generate skeletal elements or connective tissue in vivo.Our results suggest that the failure to form skeletal structures may be due to the intrinsic characteristics of MSCs.Thus,it is necessary to thoroughly evaluate the biological aspects of MSCs and how they respond to morphogenetic signals in an in vivo context.CONCLUSION PL-MSCs and UCB-MSCs express molecular markers of differentiation into skeletal lineages,but they are not sufficient to generate complex skeletal structures in vivo.
基金Supported by The Charles Sturt University Writing Up Award
文摘A characteristic of neurological disorders is the loss of critical populations of cells that the body is unable to replace,thus there has been much interest in identifying methods of generating clinically relevant numbers of cells to replace those that have been damaged or lost.The process of neural direct conversion,in which cells of one lineage are converted into cells of a neural lineage without first inducing pluripotency,shows great potential,with evidence of the generation of a range of functional neural cell types both in vitro and in vivo,through viral and non-viral delivery of exogenous factors,as well as chemical induction methods.Induced neural cells have been proposed as an attractive alternative to neural cells derived from embryonic or induced pluripotent stem cells,with prospective roles in the investigation of neurological disorders,including neurodegenerative disease modelling,drug screening,and cellular replacement for regenerative medicine applications,however further investigations into improving the efficacy and safety of these methods need to be performed before neural direct conversion becomes a clinically viable option.In this review,we describe the generation of diverse neural cell types via direct conversion of somatic cells,with comparison against stem cell-based approaches,as well as discussion of their potential research and clinical applications.