Fracture-cave reservoirs in carbonate rocks are characterized by a large difference in fracture and cavity size,and a sharp variation in lithology and velocity,thereby resulting in complex diffraction responses.Some s...Fracture-cave reservoirs in carbonate rocks are characterized by a large difference in fracture and cavity size,and a sharp variation in lithology and velocity,thereby resulting in complex diffraction responses.Some small-scale fractures and caves cause weak diffraction energy and would be obscured by the continuous reflection layer in the imaging section,thereby making them difficult to identify.This paper develops a diffraction wave imaging method in the dip domain,which can improve the resolution of small-scale diffractors in the imaging section.Common imaging gathers(CIGs)in the dip domain are extracted by Gaussian beam migration.In accordance with the geometric differences of the diffraction being quasilinear and the reflection being quasiparabolic in the dip-domain CIGs,we use slope analysis technique to filter waves and use Hanning window function to improve the diffraction wave separation level.The diffraction dip-domain CIGs are stacked horizontally to obtain diffraction imaging results.Wavefield separation analysis and numerical modeling results show that the slope analysis method,together with Hanning window filtering,can better suppress noise to obtain the diffraction dip-domain CIGs,thereby improving the clarity of the diffractors in the diffraction imaging section.展开更多
A method for reconstructing crustal velocity structure using the optimization of stacking receiver function amplitude in the depth domain,named common conversion amplitude(CCA)inversion,is presented.The conversion amp...A method for reconstructing crustal velocity structure using the optimization of stacking receiver function amplitude in the depth domain,named common conversion amplitude(CCA)inversion,is presented.The conversion amplitude in the depth domain,which represents the impedance change in the medium,is obtained by assigning the receiver function amplitude to the corresponding conversion position where the P-to-S conversion occurred.Utilizing the conversion amplitude variation with depth as an optimization objective,imposing reliable prior constraints on the structural model frame and velocity range,and adopting a stepwise search inversion technique,this method efficiently weakens the tendency of easily falling into the local extremum in conventional receiver function inversion.Synthetic tests show that the CCA inversion can reconstruct complex crustal velocity structures well and is especially suitable for revealing crustal evolution by estimating diverse velocity distributions.Its performance in reconstructing crustal structure is superior to that of the conventional receiver function imaging method.展开更多
Traditional pre-stack depth migration can only provide subsurface structural information. However, simple structure information is insufficient for petroleum exploration which also needs amplitude information proporti...Traditional pre-stack depth migration can only provide subsurface structural information. However, simple structure information is insufficient for petroleum exploration which also needs amplitude information proportional to reflection coefficients. In recent years, pre-stack depth migration algorithms which preserve amplitudes and based on the one- way wave equation have been developed. Using the method in the shot domain requires a deconvolution imaging condition which produces some instability in areas with complicated structure and dramatic lateral variation in velocity. Depth migration with preserved amplitude based on the angle domain can overcome the instability of the one-way wave migration imaging condition with preserved amplitude. It can also offer provide velocity analysis in the angle domain of common imaging point gathers. In this paper, based on the foundation of the one-way wave continuation operator with preserved amplitude, we realized the preserved amplitude prestack depth migration in the angle domain. Models and real data validate the accuracy of the method.展开更多
Reflection imaging results generally reveal large-scale continuous geological information,and it is difficult to identify small-scale geological bodies such as breakpoints,pinch points,small fault blocks,caves,and fra...Reflection imaging results generally reveal large-scale continuous geological information,and it is difficult to identify small-scale geological bodies such as breakpoints,pinch points,small fault blocks,caves,and fractures,etc.Diffraction imaging is an important method to identify small-scale geological bodies and it has higher resolution than reflection imaging.In the common-offset domain,reflections are mostly expressed as smooth linear events,whereas diffractions are characterized by hyperbolic events.This paper proposes a diffraction extraction method based on double sparse transforms.The linear events can be sparsely expressed by the high-resolution linear Radon transform,and the curved events can be sparsely expressed by the Curvelet transform.A sparse inversion model is built and the alternating direction method is used to solve the inversion model.Simulation data and field data experimental results proved that the diffractions extraction method based on double sparse transforms can effectively improve the imaging quality of faults and other small-scale geological bodies.展开更多
基金funded jointly by the National Natural Science Foundation of China(No.41104069)Shandong Province Higher Educational Science and Technology Program(No.J17KA197)+1 种基金Open Foundation of Shandong Provincial Key Laboratory of Depositional Mineralization&Sedimentary Minerals of Shandong University of Science and Technology(No.DMSM2018018)Chunhui Research Foundation of Shengli College,China University of Petroleum(No.KY2017007)。
文摘Fracture-cave reservoirs in carbonate rocks are characterized by a large difference in fracture and cavity size,and a sharp variation in lithology and velocity,thereby resulting in complex diffraction responses.Some small-scale fractures and caves cause weak diffraction energy and would be obscured by the continuous reflection layer in the imaging section,thereby making them difficult to identify.This paper develops a diffraction wave imaging method in the dip domain,which can improve the resolution of small-scale diffractors in the imaging section.Common imaging gathers(CIGs)in the dip domain are extracted by Gaussian beam migration.In accordance with the geometric differences of the diffraction being quasilinear and the reflection being quasiparabolic in the dip-domain CIGs,we use slope analysis technique to filter waves and use Hanning window function to improve the diffraction wave separation level.The diffraction dip-domain CIGs are stacked horizontally to obtain diffraction imaging results.Wavefield separation analysis and numerical modeling results show that the slope analysis method,together with Hanning window filtering,can better suppress noise to obtain the diffraction dip-domain CIGs,thereby improving the clarity of the diffractors in the diffraction imaging section.
基金financially supported by the National Natural Science Foundation of China(Grant 91755214).
文摘A method for reconstructing crustal velocity structure using the optimization of stacking receiver function amplitude in the depth domain,named common conversion amplitude(CCA)inversion,is presented.The conversion amplitude in the depth domain,which represents the impedance change in the medium,is obtained by assigning the receiver function amplitude to the corresponding conversion position where the P-to-S conversion occurred.Utilizing the conversion amplitude variation with depth as an optimization objective,imposing reliable prior constraints on the structural model frame and velocity range,and adopting a stepwise search inversion technique,this method efficiently weakens the tendency of easily falling into the local extremum in conventional receiver function inversion.Synthetic tests show that the CCA inversion can reconstruct complex crustal velocity structures well and is especially suitable for revealing crustal evolution by estimating diverse velocity distributions.Its performance in reconstructing crustal structure is superior to that of the conventional receiver function imaging method.
基金supported by the National 863 Program(Grant No.2006AA06Z206)the National 973 Program(Grant No.2007CB209605)CNPC geophysical laboratories and Ph.D innovative funding in China University of Petroleum(East China)
文摘Traditional pre-stack depth migration can only provide subsurface structural information. However, simple structure information is insufficient for petroleum exploration which also needs amplitude information proportional to reflection coefficients. In recent years, pre-stack depth migration algorithms which preserve amplitudes and based on the one- way wave equation have been developed. Using the method in the shot domain requires a deconvolution imaging condition which produces some instability in areas with complicated structure and dramatic lateral variation in velocity. Depth migration with preserved amplitude based on the angle domain can overcome the instability of the one-way wave migration imaging condition with preserved amplitude. It can also offer provide velocity analysis in the angle domain of common imaging point gathers. In this paper, based on the foundation of the one-way wave continuation operator with preserved amplitude, we realized the preserved amplitude prestack depth migration in the angle domain. Models and real data validate the accuracy of the method.
基金supported by National Natural Science Foundation of China(41974166)Natural Science Foundation of Hebei Province(D2019403082,D2021403010)+1 种基金Hebei Province“three-threethree talent project”(A202005009)Funding for the Science and Technology Innovation Team Project of Hebei GEO University(KJCXTD202106)
文摘Reflection imaging results generally reveal large-scale continuous geological information,and it is difficult to identify small-scale geological bodies such as breakpoints,pinch points,small fault blocks,caves,and fractures,etc.Diffraction imaging is an important method to identify small-scale geological bodies and it has higher resolution than reflection imaging.In the common-offset domain,reflections are mostly expressed as smooth linear events,whereas diffractions are characterized by hyperbolic events.This paper proposes a diffraction extraction method based on double sparse transforms.The linear events can be sparsely expressed by the high-resolution linear Radon transform,and the curved events can be sparsely expressed by the Curvelet transform.A sparse inversion model is built and the alternating direction method is used to solve the inversion model.Simulation data and field data experimental results proved that the diffractions extraction method based on double sparse transforms can effectively improve the imaging quality of faults and other small-scale geological bodies.