期刊文献+
共找到217篇文章
< 1 2 11 >
每页显示 20 50 100
A STRONG POSITIVITY PROPERTY AND A RELATED INVERSE SOURCE PROBLEM FOR MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATIONS
1
作者 Li HU Zhiyuan LI Xiaona YANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期2019-2040,共22页
In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-... In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm. 展开更多
关键词 fractional diffusion equation inverse source problem nonlocal observation observation UNIQUENESS Tikhonov regularization
下载PDF
Diffusion Equations of the Electric Charges and Magnetic Flux
2
作者 Salama Abdelhady Mohamed S. Abdelhady 《Journal of Electromagnetic Analysis and Applications》 2024年第5期69-83,共15页
Innovative definitions of the electric and magnetic diffusivities through conducting mediums and innovative diffusion equations of the electric charges and magnetic flux are verified in this article. Such innovations ... Innovative definitions of the electric and magnetic diffusivities through conducting mediums and innovative diffusion equations of the electric charges and magnetic flux are verified in this article. Such innovations depend on the analogy of the governing laws of diffusion of the thermal, electrical, and magnetic energies and newly defined natures of the electric charges and magnetic flux as energy, or as electromagnetic waves, that have electric and magnetic potentials. The introduced diffusion equations of the electric charges and magnetic flux involve Laplacian operator and the introduced diffusivities. Both equations are applied to determine the electric and magnetic fields in conductors as the heat diffusion equation which is applied to determine the thermal field in steady and unsteady heat diffusion conditions. The use of electric networks for experimental modeling of thermal networks represents sufficient proof of similarity of the diffusion equations of both fields. By analysis of the diffusion phenomena of the three considered modes of energy transfer;the rates of flow of these energies are found to be directly proportional to the gradient of their volumetric concentration, or density, and the proportionality constants in such relations are the diffusivity of each energy. Such analysis leads also to find proportionality relations between the potentials of such energies and their volumetric concentrations. Validity of the introduced diffusion equations is verified by correspondence their solutions to the measurement results of the electric and magnetic fields in microwave ovens. 展开更多
关键词 Diffusion Coefficient Diffusion equation Electric Charge Magnetic Flux Electromagnetic Waves Electric Field Magnetic Field
下载PDF
ANALYSIS AND DISCRETIZATION FOR AN OPTIMAL CONTROL PROBLEM OF A VARIABLE-COEFFICIENT RIESZ-FRACTIONAL DIFFUSION EQUATION WITH POINTWISE CONTROL CONSTRAINTS
3
作者 周兆杰 王方圆 郑祥成 《Acta Mathematica Scientia》 SCIE CSCD 2023年第2期640-654,共15页
We present a mathematical and numerical study for a pointwise optimal control problem governed by a variable-coefficient Riesz-fractional diffusion equation.Due to the impact of the variable diffusivity coefficient,ex... We present a mathematical and numerical study for a pointwise optimal control problem governed by a variable-coefficient Riesz-fractional diffusion equation.Due to the impact of the variable diffusivity coefficient,existing regularity results for their constantcoefficient counterparts do not apply,while the bilinear forms of the state(adjoint)equation may lose the coercivity that is critical in error estimates of the finite element method.We reformulate the state equation as an equivalent constant-coefficient fractional diffusion equation with the addition of a variable-coefficient low-order fractional advection term.First order optimality conditions are accordingly derived and the smoothing properties of the solutions are analyzed by,e.g.,interpolation estimates.The weak coercivity of the resulting bilinear forms are proven via the Garding inequality,based on which we prove the optimal-order convergence estimates of the finite element method for the(adjoint)state variable and the control variable.Numerical experiments substantiate the theoretical predictions. 展开更多
关键词 Riesz-fractional diffusion equation variable coefficient optimal control finite element method Garding inequality optimal-order error estimate
下载PDF
A LOCAL DISCONTINUOUS GALERKIN METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS
4
作者 曾展宽 陈艳萍 《Acta Mathematica Scientia》 SCIE CSCD 2023年第2期839-854,共16页
In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finit... In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finite difference method with an accuracy of order3-α,and the space discretization is based on the LDG method.For the finite difference method,we summarize and supplement some previous work by others,and apply it to the analysis of the convergence and stability of the proposed scheme.The optimal error estimate is obtained in the L2norm,indicating that the scheme has temporal(3-α)th-order accuracy and spatial(k+1)th-order accuracy,where k denotes the highest degree of a piecewise polynomial in discontinuous finite element space.The numerical results are also provided to verify the accuracy and efficiency of the considered scheme. 展开更多
关键词 local discontinuous Galerkin method time fractional diffusion equations sta-bility CONVERGENCE
下载PDF
Finite Difference Schemes for Time-Space Fractional Diffusion Equations in One-and Two-Dimensions
5
作者 Yu Wang Min Cai 《Communications on Applied Mathematics and Computation》 EI 2023年第4期1674-1696,共23页
In this paper,finite difference schemes for solving time-space fractional diffusion equations in one dimension and two dimensions are proposed.The temporal derivative is in the Caputo-Hadamard sense for both cases.The... In this paper,finite difference schemes for solving time-space fractional diffusion equations in one dimension and two dimensions are proposed.The temporal derivative is in the Caputo-Hadamard sense for both cases.The spatial derivative for the one-dimensional equation is of Riesz definition and the two-dimensional spatial derivative is given by the fractional Laplacian.The schemes are proved to be unconditionally stable and convergent.The numerical results are in line with the theoretical analysis. 展开更多
关键词 Time-space fractional diffusion equation Caputo-Hadamard derivative Riesz derivative Fractional Laplacian Numerical analysis
下载PDF
Exponential Time Differencing Method for a Reaction-Diffusion System with Free Boundary
6
作者 Shuang Liu Xinfeng Liu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期354-371,共18页
For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geomet... For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary.It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties.Applying an implicit scheme may be able to remove the stability constraints on the time step,however,it usually requires solving a large global system of nonlinear equations for each time step,and the computational cost could be significant.Integration factor(IF)or exponential time differencing(ETD)methods are one of the popular methods for temporal partial differential equations(PDEs)among many other methods.In our paper,we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries.In particular,we rewrite all ETD schemes into a linear combination of specificФ-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications,which offers significant computational advantages with adaptive Krylov subspaces.In addition,we extend this method by incorporating the level set method to solve the free boundary problem.The accuracy,stability,and efficiency of the developed method are demonstrated by numerical examples. 展开更多
关键词 Reaction diffusion equations Free boundary Integrating factor method Level set method
下载PDF
带分数阶Robin边界条件的时间-空间分数阶扩散方程的有限差分方法
7
作者 唐忠华 房少梅 《Chinese Quarterly Journal of Mathematics》 2024年第1期18-30,共13页
In this paper, an efficient numerical method is proposed to solve the Caputo-Riesz fractional diffusion equation with fractional Robin boundary conditions. We approximate the Riesz space fractional derivatives using t... In this paper, an efficient numerical method is proposed to solve the Caputo-Riesz fractional diffusion equation with fractional Robin boundary conditions. We approximate the Riesz space fractional derivatives using the fractional central difference scheme with second-order accurate. A priori estimation of the solution of the numerical scheme is given, and the stability and convergence of the numerical scheme are analyzed.Finally, a numerical example is used to verify the accuracy and efficiency of the numerical method. 展开更多
关键词 Fractional boundary conditions Stability and convergence Caputo-Riesz fractional diffusion equation
下载PDF
Conditional Symmetry Groups of Nonlinear Diffusion Equations with x-Dependent Convection and Absorption 被引量:13
8
作者 QUChang-Zheng ZHANGShun-Li 《Communications in Theoretical Physics》 SCIE CAS CSCD 2004年第2期231-234,共4页
The generalized conditional symmetry and sign-invariant approaches are developed to study the nonlinear diffusion equations with x-dependent convection and source terms. We obtain conditions under which the equations ... The generalized conditional symmetry and sign-invariant approaches are developed to study the nonlinear diffusion equations with x-dependent convection and source terms. We obtain conditions under which the equations admit the second-order generalized conditional symmetries and the first-order sign-invariants on the solutions. Several types of different generalized conditional symmetries and first-order sign-invariants for the equations with diffusion of power law are obtained. Exact solutions to the resulting equations are constructed. 展开更多
关键词 symmetry group sign-invariant nonlinear diffusion equation exact solution
下载PDF
Exact Solutions of a Generalized Multi-Fractional Nonlinear Diffusion Equation in Radical Symmetry 被引量:9
9
作者 LIU Yan-Qin MA Jun-Hai 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第11期857-861,共5页
This paper is devoted to investigating exact solutions of a generalized fractional nonlinear anomalousdiffusion equation in radical symmetry.The presence of external force and absorption is also considered.We firstinv... This paper is devoted to investigating exact solutions of a generalized fractional nonlinear anomalousdiffusion equation in radical symmetry.The presence of external force and absorption is also considered.We firstinvestigate the nonlinear anomalous diffusion equations with one-fractional derivative and then multi-fractional ones.Inboth situations,we obtain the corresponding exact solutions,and the solutions found here can have a compact behavioror a long tailed behavior. 展开更多
关键词 fractional derivative multi-fractional diffusion equation anomalous diffusion equation
下载PDF
A CLASS OF NONLINEAR SINGULARLY PERTURBED PROBLEMS FOR REACTION DIFFUSION EQUATIONS 被引量:10
10
作者 莫嘉琪 《Acta Mathematica Scientia》 SCIE CSCD 2003年第3期377-385,共9页
A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for... A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for the initial boundary value problems are studied, reduced problems of which possess two intersecting solutions. 展开更多
关键词 NONLINEAR reaction diffusion equation singular perturbation
下载PDF
THE LARGE TIME BEHAVIOR OF SPECTRAL APPROXIMATION FOR A CLASS OF PSEUDOPARABOLIC VISCOUS DIFFUSION EQUATION 被引量:4
11
作者 尚亚东 《Acta Mathematica Scientia》 SCIE CSCD 2007年第1期153-168,共16页
The asymptotic behavior of the solutions to a class of pseudoparabolic viscous diffusion equation with periodic initial condition is studied by using the spectral method. The semidiscrete Fourier approximate solution ... The asymptotic behavior of the solutions to a class of pseudoparabolic viscous diffusion equation with periodic initial condition is studied by using the spectral method. The semidiscrete Fourier approximate solution of the problem is constructed and the error estimation between spectral approximate solution and exact solution on large time is also obtained. The existence of the approximate attractor AN and the upper semicontinuity d(AN,A) → 0 are proved. 展开更多
关键词 Pseudoparabolic diffusion equation VISCOSITY spectral methods long time behavior large time error estimates
下载PDF
Functional Separable Solutions to Nonlinear Diffusion Equations by Group Foliation Method 被引量:5
12
作者 HU Jia-Yi QU Chang-Zheng YIN Hui 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第2期193-199,共7页
We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to thi... We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to this equation is studied by using the group foliation method. A classification is carried out for the equations which admit the function separable solutions. As a consequence, some solutions to the resulting equations are obtained. 展开更多
关键词 group foliation method functional separation of variable nonlinear diffusion equation symmetry group
下载PDF
A Priori and A Posteriori Error Estimates of Streamline Diffusion Finite Element Method for Optimal Control Problem Governed by Convection Dominated Diffusion Equation 被引量:5
13
作者 Ningning Yan Zhaojie Zhou 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2008年第3期297-320,共24页
In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existenc... In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results. 展开更多
关键词 Constrained optimal control problem convection dominated diffusion equation stream-line diffusion finite element method a priori error estimate a posteriori error estimate.
下载PDF
A meshless method based on moving Kriging interpolation for a two-dimensional time-fractional diffusion equation 被引量:4
14
作者 葛红霞 程荣军 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期91-97,共7页
Fractional diffusion equations have been the focus of modeling problems in hydrology, biology, viscoelasticity, physics, engineering, and other areas of applications. In this paper, a meshfree method based on the movi... Fractional diffusion equations have been the focus of modeling problems in hydrology, biology, viscoelasticity, physics, engineering, and other areas of applications. In this paper, a meshfree method based on the moving Kriging inter- polation is developed for a two-dimensional time-fractional diffusion equation. The shape function and its derivatives are obtained by the moving Kriging interpolation technique. For possessing the Kronecker delta property, this technique is very efficient in imposing the essential boundary conditions. The governing time-fractional diffusion equations are transformed into a standard weak formulation by the Galerkin method. It is then discretized into a meshfree system of time-dependent equations, which are solved by the standard central difference method. Numerical examples illustrating the applicability and effectiveness of the proposed method are presented and discussed in detail. 展开更多
关键词 meshless method moving Kriging interpolation time-fractional diffusion equation
下载PDF
THE QUASI-BOUNDARY VALUE METHOD FOR IDENTIFYING THE INITIAL VALUE OF THE SPACE-TIME FRACTIONAL DIFFUSION EQUATION 被引量:3
15
作者 Fan YANG Yan ZHANG +1 位作者 Xiao LIU Xiaoxiao LI 《Acta Mathematica Scientia》 SCIE CSCD 2020年第3期641-658,共18页
In this article,we consider to solve the inverse initial value problem for an inhomogeneous space-time fractional diffusion equation.This problem is ill-posed and the quasi-boundary value method is proposed to deal wi... In this article,we consider to solve the inverse initial value problem for an inhomogeneous space-time fractional diffusion equation.This problem is ill-posed and the quasi-boundary value method is proposed to deal with this inverse problem and obtain the series expression of the regularized solution for the inverse initial value problem.We prove the error estimates between the regularization solution and the exact solution by using an a priori regularization parameter and an a posteriori regularization parameter choice rule.Some numerical results in one-dimensional case and two-dimensional case show that our method is efficient and stable. 展开更多
关键词 Space-time fractional diffusion equation Ill-posed problem quasi-boundary value method identifying the initial value
下载PDF
IDENTIFYING AN UNKNOWN SOURCE IN SPACE-FRACTIONAL DIFFUSION EQUATION 被引量:2
16
作者 杨帆 傅初黎 李晓晓 《Acta Mathematica Scientia》 SCIE CSCD 2014年第4期1012-1024,共13页
In this paper, we identify a space-dependent source for a fractional diffusion equation. This problem is ill-posed, i.e., the solution (if it exists) does not depend continuously on the data. The generalized Tikhono... In this paper, we identify a space-dependent source for a fractional diffusion equation. This problem is ill-posed, i.e., the solution (if it exists) does not depend continuously on the data. The generalized Tikhonov regularization method is proposed to solve this problem. An a priori error estimate between the exact solution and its regularized approximation is obtained. Moreover, an a posteriori parameter choice rule is proposed and a stable error estimate is also obtained, Numerical examples are presented to illustrate the validity and effectiveness of this method. 展开更多
关键词 spatial-dependent heat source space-fractional diffusion equation generalized Tikhonov regularization A posteriori parameter choice error estimate
下载PDF
FILTERING OF MEDICAL ULTRASONIC IMAGES BASED ON A MODIFIED ANISTROPIC DIFFUSION EQUATION 被引量:3
17
作者 Wang Ling Li Deyu +4 位作者 Wang Tianfu Lin Jiangli Peng Yun Rao Li Zheng Yi 《Journal of Electronics(China)》 2007年第2期209-213,共5页
Speckle noise reduction is a key problem of the image analysis of medical UltraSound images. In this paper, two important improvements have been developed to a fast anisotropic diffusion algorithm for speckle noise re... Speckle noise reduction is a key problem of the image analysis of medical UltraSound images. In this paper, two important improvements have been developed to a fast anisotropic diffusion algorithm for speckle noise reduction. The Gaussian filter is firstly used before gradient calculation, and then the adaptive algorithm of the factor k is proposed. Numerous experimental results show that the proposed model is superior to other methods in noise removal, fidelity and edge preservation. It is suitable for the preprocessing of a great number of medical UltraSound images, such as three dimen- sional reconstruction. 展开更多
关键词 Diffusion equation Edge detection Image procession Speckle denoise
下载PDF
SINGULAR SOLUTIONS FOR A CONVECTION DIFFUSION EQUATION WITH ABSORPTION 被引量:2
18
作者 赵俊宁 《Acta Mathematica Scientia》 SCIE CSCD 1995年第4期431-441,共11页
In this paper we discuss the existence and nonexistence of singular solutions for a porous medium equations with convection and absorption terms.
关键词 convection diffusion equation singular solution existence and nonexistence
下载PDF
Balance of Datum Land Prices Among Cities Based on the City Gravitation Model and Stochastic Diffusion Equation 被引量:2
19
作者 LIU Yaolin LIU Yang +1 位作者 LAN Zeying XIAYin LIU Wei 《Geo-Spatial Information Science》 2008年第1期71-78,共8页
A balance of urban datum land prices is achieved to harmonize regional land prices and make the prices truly reflect different economic development levels and land prices among cities. The current piecewise linear int... A balance of urban datum land prices is achieved to harmonize regional land prices and make the prices truly reflect different economic development levels and land prices among cities. The current piecewise linear interpolation balance method widely used has two drawbacks that always lead to an unsatisfactory balance among some cities. When the excess of land price in the central city to the surrounding zone reaches a certain degree, land price in the circumjacent city is not only consistent with the local land grade and land use level, but also influenced by the diffusion of land price in the central city. Thus, a new balanced scheme of datum land prices based on the city gravitation model and stochastic diffusion equation is brought forward. Finally, the new method is examined in the practice of datum land price balance in Hubei Province, China. 展开更多
关键词 datum land price balance city gravitation model stochastic diffusion equation
下载PDF
Superconvergence Study of the Direct Discontinuous Galerkin Method and Its Variations for Diffusion Equations 被引量:2
20
作者 Yuqing Miao Jue Yan Xinghui Zhong 《Communications on Applied Mathematics and Computation》 2022年第1期180-204,共25页
In this paper,we apply the Fourier analysis technique to investigate superconvergence properties of the direct disontinuous Galerkin(DDG)method(Liu and Yan in SIAM J Numer Anal 47(1):475-698,2009),the DDG method with ... In this paper,we apply the Fourier analysis technique to investigate superconvergence properties of the direct disontinuous Galerkin(DDG)method(Liu and Yan in SIAM J Numer Anal 47(1):475-698,2009),the DDG method with the interface correction(DDGIC)(Liu and Yan in Commun Comput Phys 8(3):541-564,2010),the symmetric DDG method(Vidden and Yan in Comput Math 31(6):638-662,2013),and the nonsymmetric DDG method(Yan in J Sci Comput 54(2):663-683,2013).We also include the study of the interior penalty DG(IPDG)method,due to its close relation to DDG methods.Error estimates are carried out for both P2 and P3 polynomial approximations.By investigating the quantitative errors at the Lobatto points,we show that the DDGIC and symmetric DDG methods are superior,in the sense of obtaining(k+2)th superconvergence orders for both P2 and P3 approximations.Superconvergence order of(k+2)is also observed for the IPDG method with P3 polynomial approximations.The errors are sensitive to the choice of the numerical flux coefficient for even degree P2 approximations,but are not for odd degree P3 approxi-mations.Numerical experiments are carried out at the same time and the numerical errors match well with the analytically estimated errors. 展开更多
关键词 Direct discontinuous Galerkin methods SUPERCONVERGENCE Fourier analysis Diffusion equation
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部