Atmospheric pressure cold plasma jets(APCPJs) typically exhibit a slender, conical structure,which imposes limitations on their application for surface modification due to the restricted treatment area. In this paper,...Atmospheric pressure cold plasma jets(APCPJs) typically exhibit a slender, conical structure,which imposes limitations on their application for surface modification due to the restricted treatment area. In this paper, we introduce a novel plasma jet morphology known as the large-scale cold plasma jet(LSCPJ), characterized by the presence of both a central conical plasma jet and a peripheral trumpet-like diffuse plasma jet. The experimental investigations have identified the factors influencing the conical and the trumpet-like diffuse plasma jet, and theoretical simulations have shed light on the role of the flow field and the electric field in shaping the formation of the LSCPJ. It is proved that, under conditions of elevated helium concentration, the distributions of impurity gas particles and the electric field jointly determine the plasma jet’s morphology. High-speed ICCD camera images confirm the dynamic behavior of plasma bullets in LSCPJ, which is consistent with the theoretical analysis. Finally, it is demonstrated that when applied to the surface treatment of silicone rubber, LSCPJ can achieve a treatment area over 28 times larger than that of APCPJ under equivalent conditions. This paper uncovers the crucial role of impurity gases and electric fields in shaping plasma jet morphology and opens up the possibility of efficiently diversifying plasma jet generation effects through external electromagnetic fields. These insights hold the promise of reducing the generation cost of plasma jets and expanding their applications across various industrial sectors.展开更多
The nanoparticle transportation and Brownian diffusion in planar jet flow is simulated via large eddy simulation in this work. To thorough compare the Brownian diffusion with different particle size, we computed three...The nanoparticle transportation and Brownian diffusion in planar jet flow is simulated via large eddy simulation in this work. To thorough compare the Brownian diffusion with different particle size, we computed three particle diameter dp = 1 nm, 10 nm and 50 nm in one simulation process simultaneously. The numerical results showed that at the flow de- veloping stage, the particle mass concentration pattern develops as the flow vorticity develops. The distribution is nearly uniform at the lower reaches of the nozzle exit. When the jet flow is developing on, vortexes always carry the particle from upstream to downstream, from the central axis region to the outer mixing layer of jet. At the front of the jet flow, particles distribute more homogeneous for they have more residence time to diffuse from higher concentration region to the lower concentration region. The time averaged particle concentration distribution patterns are similar to Gaussian distribution form. The maximum concentration contributed by diffusion is present at the mixing layer near the nozzle exit. The farther away from the nozzle exit in the cross-stream direction, the smaller the concentration is. The maximum concentration contributed by diffusion is several orders smaller than that contributed by flow convection.展开更多
1 INTRODUCTIONGas and liquid distributions in a self-aspirated reverse flow jet loop reactor dependchiefly on the aspiration and the breakup against gas phase by the liquid nozzle aswell as the redistribution in the d...1 INTRODUCTIONGas and liquid distributions in a self-aspirated reverse flow jet loop reactor dependchiefly on the aspiration and the breakup against gas phase by the liquid nozzle aswell as the redistribution in the draft tube.It has also been noted that effective diffu-sion or backmixing in the reactor has great influence on the flow and mass transferrates.In this case,accurate descriptions about the fluid flow and diffusion conditions inthe reactor are most necessary for effective amplification of them.展开更多
The improved delayed detached eddy simulation method with shear stress transport model was used to analyze the evolution of vortex structure,velocity and pressure fields of swirling jet.The influence of nozzle pressur...The improved delayed detached eddy simulation method with shear stress transport model was used to analyze the evolution of vortex structure,velocity and pressure fields of swirling jet.The influence of nozzle pressure drop on vortex structure development and turbulence pulsation was investigated.The development of vortex structure could be divided into three stages:Kelvin-Helmholtz(K-H)instability,transition stage and swirling flow instability.Swirling flow could significantly enhance radial turbulence pulsation and increase diffusion angle.At the downstream of the jet flow,turbulence pulsation dissipation was the main reason for jet velocity attenuation.With the increase of pressure drop,the jet velocity,pulsation amplitude and the symmetry of velocity distribution increased correspondingly.Meanwhile the pressure pulsation along with the axis and vortex transport intensity also increased significantly.When the jet distance exceeded about 9 times the dimensionless jet distance,the impact distance of swirling jet could not be improved effectively by increasing the pressure drop.However,it could effectively increase the swirl intensity and jet diffusion angle.The swirling jet is more suitable for radial horizontal drilling with large hole size,coalbed methane horizontal well cavity completion and roadway drilling and pressure relief,etc.展开更多
This paper investigated lateral diffusion of a confined two-dimensional wall jet (air inlet height: 5 cm) through a perforated plate. We considered two plates with porosities of and . The plates were positi...This paper investigated lateral diffusion of a confined two-dimensional wall jet (air inlet height: 5 cm) through a perforated plate. We considered two plates with porosities of and . The plates were positioned at distances of 10 cm and 20 cm below the jet inlet. The experiments were realized using 2D Laser Doppler Anemometer (LDA). Different profiles of mean and fluctuating velocities are presented. The presence of a perforated plate strongly modified the airflow pattern compared to an empty enclosure. The velocities above and below the plate depend on several parameters, including the porosity and the plate’s position relative to the inlet slot and the longitudinal position. The difference between the flow velocity above and below the plates could not be related using a universal formula that depends on these parameters. We also investigated the influence of a porous media of a height of 20 cm (a stack of spheres having a diameter of 3.75 cm) located below the perforated plate. The results highlight that the porous medium strengthens the effects of the perforated plate on the flow.展开更多
When performing numerical modeling of fluid flows where a clear medium is adjacent to a porous medium, a degree of difficulty related to the condition at the interface between the two media, where slip velocity exists...When performing numerical modeling of fluid flows where a clear medium is adjacent to a porous medium, a degree of difficulty related to the condition at the interface between the two media, where slip velocity exists, is encountered. A similar situation can be found when a jet flow interacts with a perforated plate. The numerical modeling of a perforated plate by meshing in detail each hole is most often impossible in a practical case (many holes with different shapes). Therefore, perforated plates are often modeled as porous zones with a simplified hypothesis based on pressure losses related to the normal flow through the plate. Nevertheless, previous investigations of flow over permeable walls highlight the impossibility of deducing a universal analytical law governing the slip velocity coefficient since the latter depends on many parameters such as the Reynolds number, porosity, interface structure, design of perforations, and flow direction. This makes the modeling of such a configuration difficult. The present study proposes an original numerical interface law for a perforated plate. It is used to model the turbulent jet flow interacting with a perforated plate considered as a fictitious porous medium without a detailed description of the perforations. It considers the normal and tangential effects of the flow over the plate. Validation of the model is realized through comparison with experimental data.展开更多
基金supported by the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515011505)Shenzhen Science and Technology Program(Nos.JCYJ 20220530142808020 and JSGG20220606140202005)+1 种基金China Postdoctoral Science Foundation(No.2023 M731878)Project(No.SKLD22KM17)by State Key Laboratory of Power System Operation and Control。
文摘Atmospheric pressure cold plasma jets(APCPJs) typically exhibit a slender, conical structure,which imposes limitations on their application for surface modification due to the restricted treatment area. In this paper, we introduce a novel plasma jet morphology known as the large-scale cold plasma jet(LSCPJ), characterized by the presence of both a central conical plasma jet and a peripheral trumpet-like diffuse plasma jet. The experimental investigations have identified the factors influencing the conical and the trumpet-like diffuse plasma jet, and theoretical simulations have shed light on the role of the flow field and the electric field in shaping the formation of the LSCPJ. It is proved that, under conditions of elevated helium concentration, the distributions of impurity gas particles and the electric field jointly determine the plasma jet’s morphology. High-speed ICCD camera images confirm the dynamic behavior of plasma bullets in LSCPJ, which is consistent with the theoretical analysis. Finally, it is demonstrated that when applied to the surface treatment of silicone rubber, LSCPJ can achieve a treatment area over 28 times larger than that of APCPJ under equivalent conditions. This paper uncovers the crucial role of impurity gases and electric fields in shaping plasma jet morphology and opens up the possibility of efficiently diversifying plasma jet generation effects through external electromagnetic fields. These insights hold the promise of reducing the generation cost of plasma jets and expanding their applications across various industrial sectors.
文摘The nanoparticle transportation and Brownian diffusion in planar jet flow is simulated via large eddy simulation in this work. To thorough compare the Brownian diffusion with different particle size, we computed three particle diameter dp = 1 nm, 10 nm and 50 nm in one simulation process simultaneously. The numerical results showed that at the flow de- veloping stage, the particle mass concentration pattern develops as the flow vorticity develops. The distribution is nearly uniform at the lower reaches of the nozzle exit. When the jet flow is developing on, vortexes always carry the particle from upstream to downstream, from the central axis region to the outer mixing layer of jet. At the front of the jet flow, particles distribute more homogeneous for they have more residence time to diffuse from higher concentration region to the lower concentration region. The time averaged particle concentration distribution patterns are similar to Gaussian distribution form. The maximum concentration contributed by diffusion is present at the mixing layer near the nozzle exit. The farther away from the nozzle exit in the cross-stream direction, the smaller the concentration is. The maximum concentration contributed by diffusion is several orders smaller than that contributed by flow convection.
基金This work was supported by the National Science Foundation of China.
文摘1 INTRODUCTIONGas and liquid distributions in a self-aspirated reverse flow jet loop reactor dependchiefly on the aspiration and the breakup against gas phase by the liquid nozzle aswell as the redistribution in the draft tube.It has also been noted that effective diffu-sion or backmixing in the reactor has great influence on the flow and mass transferrates.In this case,accurate descriptions about the fluid flow and diffusion conditions inthe reactor are most necessary for effective amplification of them.
基金Supported by the Beijing Natural Science Foundation Project(3222039)National Natural Science Foundation of China(51827804).
文摘The improved delayed detached eddy simulation method with shear stress transport model was used to analyze the evolution of vortex structure,velocity and pressure fields of swirling jet.The influence of nozzle pressure drop on vortex structure development and turbulence pulsation was investigated.The development of vortex structure could be divided into three stages:Kelvin-Helmholtz(K-H)instability,transition stage and swirling flow instability.Swirling flow could significantly enhance radial turbulence pulsation and increase diffusion angle.At the downstream of the jet flow,turbulence pulsation dissipation was the main reason for jet velocity attenuation.With the increase of pressure drop,the jet velocity,pulsation amplitude and the symmetry of velocity distribution increased correspondingly.Meanwhile the pressure pulsation along with the axis and vortex transport intensity also increased significantly.When the jet distance exceeded about 9 times the dimensionless jet distance,the impact distance of swirling jet could not be improved effectively by increasing the pressure drop.However,it could effectively increase the swirl intensity and jet diffusion angle.The swirling jet is more suitable for radial horizontal drilling with large hole size,coalbed methane horizontal well cavity completion and roadway drilling and pressure relief,etc.
文摘This paper investigated lateral diffusion of a confined two-dimensional wall jet (air inlet height: 5 cm) through a perforated plate. We considered two plates with porosities of and . The plates were positioned at distances of 10 cm and 20 cm below the jet inlet. The experiments were realized using 2D Laser Doppler Anemometer (LDA). Different profiles of mean and fluctuating velocities are presented. The presence of a perforated plate strongly modified the airflow pattern compared to an empty enclosure. The velocities above and below the plate depend on several parameters, including the porosity and the plate’s position relative to the inlet slot and the longitudinal position. The difference between the flow velocity above and below the plates could not be related using a universal formula that depends on these parameters. We also investigated the influence of a porous media of a height of 20 cm (a stack of spheres having a diameter of 3.75 cm) located below the perforated plate. The results highlight that the porous medium strengthens the effects of the perforated plate on the flow.
文摘When performing numerical modeling of fluid flows where a clear medium is adjacent to a porous medium, a degree of difficulty related to the condition at the interface between the two media, where slip velocity exists, is encountered. A similar situation can be found when a jet flow interacts with a perforated plate. The numerical modeling of a perforated plate by meshing in detail each hole is most often impossible in a practical case (many holes with different shapes). Therefore, perforated plates are often modeled as porous zones with a simplified hypothesis based on pressure losses related to the normal flow through the plate. Nevertheless, previous investigations of flow over permeable walls highlight the impossibility of deducing a universal analytical law governing the slip velocity coefficient since the latter depends on many parameters such as the Reynolds number, porosity, interface structure, design of perforations, and flow direction. This makes the modeling of such a configuration difficult. The present study proposes an original numerical interface law for a perforated plate. It is used to model the turbulent jet flow interacting with a perforated plate considered as a fictitious porous medium without a detailed description of the perforations. It considers the normal and tangential effects of the flow over the plate. Validation of the model is realized through comparison with experimental data.