TiAl was diffusion bonded to Ti and TC4 alloy in vacuum furnace. Results showed,at the TiAl-Ti interface,the reaction layer of stratification Ti3Al was formed closest to TiAl base,and the a phase and the α + βphase ...TiAl was diffusion bonded to Ti and TC4 alloy in vacuum furnace. Results showed,at the TiAl-Ti interface,the reaction layer of stratification Ti3Al was formed closest to TiAl base,and the a phase and the α + βphase arised closest to Ti base at 1173K and 1573K respectively. The phase structure of TiAl/ and the phase structure of TiAlwere observed be- tween AiAl and TC4 under respetive bonding temperature.The fiacture at tensile testing occurred in the bond - line, producing very flat fracture surfaces with some pull-out of the TiAl materials.The ultimate tensile strengths of the joint were approximate to γ-TiAl base marterial.展开更多
Vacuum diffusion bonding of a TiAl based alloy (TAD) to a titanium alloy (TC2) was carried out at 1 273 K for 15~120 min under a pressure of 25 MPa . The kinds of the reaction products and the interface s...Vacuum diffusion bonding of a TiAl based alloy (TAD) to a titanium alloy (TC2) was carried out at 1 273 K for 15~120 min under a pressure of 25 MPa . The kinds of the reaction products and the interface structures of the joints were investigated by SEM, EPMA and XRD. Based on this, a formation mechanism of the interface structure was elucidated. Experimental and analytical results show that two reaction layers have formed during the diffusion bonding of TAD to TC2. One is Al rich α(Ti)layer adjacent to TC2,and the other is (Ti 3Al+TiAl)layer adjacent to TAD,thus the interface structure of the TAD/TC2 joints is TAD/(Ti 3Al+TiAl)/α(Ti)/TC2.This interface structure forms according to a three stage mechanism,namely(a)the occurrence of a single phase α(Ti)layer;(b)the occurrence of a duplex phase(Ti 3Al+TiAl)layer;and(c)the growth of the α(Ti)and (Ti 3Al+TiAl)layers.展开更多
TiAl is diffusion bonded with Ti, TC4 Alloy and 40Cr Steel by heating in vacuum, and analysis of interfaces shows stratified Ti 3Al forms in TiAl/Ti interface closest to TiAl base, and the α phase and the α+β phase...TiAl is diffusion bonded with Ti, TC4 Alloy and 40Cr Steel by heating in vacuum, and analysis of interfaces shows stratified Ti 3Al forms in TiAl/Ti interface closest to TiAl base, and the α phase and the α+β phase arise closest to Ti base at lower temperature and higher temperature respectively; Structure of TiAl/TC4 interface is TiAl/γ+α 2/Ti 3Al/α-Ti/TC4 at lower temperature and TiAl/γ+β+α 2/TC4 at high temperature; in TiAl/40Cr steel interface, obvious decarbonised layer on steel side while TiC and reaction phase with Fe Al Ti system form on TiAl side.展开更多
Direct diffusion bonding of an orthorhombic Ti2AlNb base alloy to a TiAl base alloy, Ti-22Al-23Nb-2Ta and Ti-46.2Al-2Cr-2Nb-0.15B (at. pct), was carried out and the interface microstructure, formation of new phase a...Direct diffusion bonding of an orthorhombic Ti2AlNb base alloy to a TiAl base alloy, Ti-22Al-23Nb-2Ta and Ti-46.2Al-2Cr-2Nb-0.15B (at. pct), was carried out and the interface microstructure, formation of new phase at the interface and joint strength were characterized. At low temperature, a new phase with AlNb2-structure, Al(Nb, Ti)2, was formed in the interface region adjacent to the O base alloy. The α2 was found to be the major reaction product and developed in the interface region adjacent to the TiAl alloy as well as in the region adjacent to the O base alloy accompanying the formation of Al(Nb, Ti)2. The occurrence of Al(Nb, Ti)2 has been attributed to the different diffusivity of Nb and Al, leading to a eutectoid-like reaction. At relatively high temperature, Al(Nb, Ti)2 did not form due to enhanced diffusion of Nb but a B2-enriched zone formed on the O alloy side instead after long holding time. Only when an appropriate interface microstructure was achieved by optimizing the bonding parameters, could the shear strength of the joint reach 80% of that of the TiAl base alloy.展开更多
The interdiffusion behavior in Nb/TiAl alloy diffusion couples was studied.The process was carried out in the temperature range of 950-1400℃for 8 h in the vacuum hot-pressure sintering furnace.The microstructural evo...The interdiffusion behavior in Nb/TiAl alloy diffusion couples was studied.The process was carried out in the temperature range of 950-1400℃for 8 h in the vacuum hot-pressure sintering furnace.The microstructural evolution was observed by optical microscopy(OM),electron backscattered diffraction(EBSD),X-ray diffraction(XRD)technique and transmission electron microscopy(TEM).The element concentration distribution at the bonded interface was obtained by scanning electron microscopy with an energy-dispersive X-ray spectroscopy(EDS)apparatus.The thickness of reaction interface increases with bonding temperature increasing.The formed phases in diffusion interface are found to be O-Ti_(2)AlNb,σ-Nb_(2)Al,δ-Nb_(3)Al and Nb solid solution(Nbss)at 1350℃.The average interdiffusion coefficient of the interface elements was calculated by the theory of Dayananda.The results indicate that Al diffuses faster than Nb and Nb diffuses faster than Ti in the Ti-Al-Nb system.Meanwhile,it is found that Ti promotes the diffusion of Al and Nb and Nb inhibits the diffusion of Ti and Al in the process of diffusion.展开更多
文摘TiAl was diffusion bonded to Ti and TC4 alloy in vacuum furnace. Results showed,at the TiAl-Ti interface,the reaction layer of stratification Ti3Al was formed closest to TiAl base,and the a phase and the α + βphase arised closest to Ti base at 1173K and 1573K respectively. The phase structure of TiAl/ and the phase structure of TiAlwere observed be- tween AiAl and TC4 under respetive bonding temperature.The fiacture at tensile testing occurred in the bond - line, producing very flat fracture surfaces with some pull-out of the TiAl materials.The ultimate tensile strengths of the joint were approximate to γ-TiAl base marterial.
文摘Vacuum diffusion bonding of a TiAl based alloy (TAD) to a titanium alloy (TC2) was carried out at 1 273 K for 15~120 min under a pressure of 25 MPa . The kinds of the reaction products and the interface structures of the joints were investigated by SEM, EPMA and XRD. Based on this, a formation mechanism of the interface structure was elucidated. Experimental and analytical results show that two reaction layers have formed during the diffusion bonding of TAD to TC2. One is Al rich α(Ti)layer adjacent to TC2,and the other is (Ti 3Al+TiAl)layer adjacent to TAD,thus the interface structure of the TAD/TC2 joints is TAD/(Ti 3Al+TiAl)/α(Ti)/TC2.This interface structure forms according to a three stage mechanism,namely(a)the occurrence of a single phase α(Ti)layer;(b)the occurrence of a duplex phase(Ti 3Al+TiAl)layer;and(c)the growth of the α(Ti)and (Ti 3Al+TiAl)layers.
文摘TiAl is diffusion bonded with Ti, TC4 Alloy and 40Cr Steel by heating in vacuum, and analysis of interfaces shows stratified Ti 3Al forms in TiAl/Ti interface closest to TiAl base, and the α phase and the α+β phase arise closest to Ti base at lower temperature and higher temperature respectively; Structure of TiAl/TC4 interface is TiAl/γ+α 2/Ti 3Al/α-Ti/TC4 at lower temperature and TiAl/γ+β+α 2/TC4 at high temperature; in TiAl/40Cr steel interface, obvious decarbonised layer on steel side while TiC and reaction phase with Fe Al Ti system form on TiAl side.
文摘Direct diffusion bonding of an orthorhombic Ti2AlNb base alloy to a TiAl base alloy, Ti-22Al-23Nb-2Ta and Ti-46.2Al-2Cr-2Nb-0.15B (at. pct), was carried out and the interface microstructure, formation of new phase at the interface and joint strength were characterized. At low temperature, a new phase with AlNb2-structure, Al(Nb, Ti)2, was formed in the interface region adjacent to the O base alloy. The α2 was found to be the major reaction product and developed in the interface region adjacent to the TiAl alloy as well as in the region adjacent to the O base alloy accompanying the formation of Al(Nb, Ti)2. The occurrence of Al(Nb, Ti)2 has been attributed to the different diffusivity of Nb and Al, leading to a eutectoid-like reaction. At relatively high temperature, Al(Nb, Ti)2 did not form due to enhanced diffusion of Nb but a B2-enriched zone formed on the O alloy side instead after long holding time. Only when an appropriate interface microstructure was achieved by optimizing the bonding parameters, could the shear strength of the joint reach 80% of that of the TiAl base alloy.
基金financially supported by the National Key R&D Program of China(No.2016YFB200505)。
文摘The interdiffusion behavior in Nb/TiAl alloy diffusion couples was studied.The process was carried out in the temperature range of 950-1400℃for 8 h in the vacuum hot-pressure sintering furnace.The microstructural evolution was observed by optical microscopy(OM),electron backscattered diffraction(EBSD),X-ray diffraction(XRD)technique and transmission electron microscopy(TEM).The element concentration distribution at the bonded interface was obtained by scanning electron microscopy with an energy-dispersive X-ray spectroscopy(EDS)apparatus.The thickness of reaction interface increases with bonding temperature increasing.The formed phases in diffusion interface are found to be O-Ti_(2)AlNb,σ-Nb_(2)Al,δ-Nb_(3)Al and Nb solid solution(Nbss)at 1350℃.The average interdiffusion coefficient of the interface elements was calculated by the theory of Dayananda.The results indicate that Al diffuses faster than Nb and Nb diffuses faster than Ti in the Ti-Al-Nb system.Meanwhile,it is found that Ti promotes the diffusion of Al and Nb and Nb inhibits the diffusion of Ti and Al in the process of diffusion.