This work is a simulation model with the LAMMPS calculation code of an electrode based on alkali metal oxides (lithium, sodium and potassium) using the Lennard Jones potential. For a multiplicity of 8*8*8, we studied ...This work is a simulation model with the LAMMPS calculation code of an electrode based on alkali metal oxides (lithium, sodium and potassium) using the Lennard Jones potential. For a multiplicity of 8*8*8, we studied a gap-free model using molecular dynamics. Physical quantities such as volume and pressure of the Na-O and Li-O systems exhibit similar behaviors around the thermodynamic ensembles NPT and NVE. However, for the Na2O system, at a minimum temperature value, we observe a range of total energy values;in contrast, for the Li2O system, a minimum energy corresponds to a range of temperatures. Finally, for physicochemical properties, we studied the diffusion coefficient and activation energy of lithium and potassium oxides around their melting temperatures. The order of magnitude of the diffusion coefficients is given by the relation Dli-O >DNa-O for the multiplicity 8*8*8, while for the activation energy, the order is well reversed EaNa-O > EaLi-O.展开更多
This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studi...This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studied;with and without gap. In this work, we present the structural, physical and chemical properties of the lithium, sodium and potassium electrodes. For the structural properties, the cohesive energy and the mesh parameters were calculated, revealing that, whatever the chemical element selected, the compact hexagonal hcp structure is the most stable, followed by the face-centred cubic CFC structure, and finally the BCC structure. The most stable structure is lithium, with a cohesion energy of -6570 eV, and the lowest bcc-hcp transition energy of -0.553 eV/atom, followed by sodium. For physical properties, kinetic and potential energies were calculated for each of the sectioned chemical elements, with lithium achieving the highest value. Finally, for the chemical properties, we studied the diffusion coefficient and the activation energy. Only potassium followed an opposite order to the other two, with the quantities with lacunae being greater than those without lacunae, whatever the multiplicity. The order of magnitude of the diffusion coefficients is given by the relationship D<sub>Li</sub> > D<sub>Na</sub> > D<sub>k</sub> for the multiplicity 6*6*6, while for the activation energy the order is reversed.展开更多
The populations of urban centers in Congo-Brazzaville have decided to develop various methods of water storage (concrete or masonry underground tanks) for domestic use, due to shortages in the distribution of water th...The populations of urban centers in Congo-Brazzaville have decided to develop various methods of water storage (concrete or masonry underground tanks) for domestic use, due to shortages in the distribution of water through the public network. However, questions remain as to the physico-chemical quality of the water stored in these tanks, when these structures are built in wet and relatively polluted areas. This paper presents a model of pollutant diffusion through the cementitious matrix (concrete) of tank walls simulated at a buried reservoir. The results of the experimental and numerical simulations show that certain concrete parameters, such as porosity, permeability and diffusivity, have a significant influence on the transfer of pollutants through the concrete walls, thus altering the physico-chemical quality of the stored water. The numerical models (1D) used to predict pollutant transfer and the quality of the stored water are consistent with those of the optimal control for identifying the diffusion coefficient. Major ion concentrations appear to be correlated with system porosity and diffusion coefficient. Nevertheless, the identification of the diffusion coefficient from the optimal control method, based on an explicit numerical resolution of a finite volume PDE for the approximation of the experiment, is not consistent with that of the optimal control method.展开更多
The diffusion coefficients of several alloying elements(Al,Mo,Co,Ta,Ru,W,Cr,Re) in Ni are directly calculated using the five-frequency model and the first principles density functional theory.The correlation factors...The diffusion coefficients of several alloying elements(Al,Mo,Co,Ta,Ru,W,Cr,Re) in Ni are directly calculated using the five-frequency model and the first principles density functional theory.The correlation factors provided by the five-frequency model are explicitly calculated.The calculated diffusion coefficients show their excellent agreement with the available experimental data.Both the diffusion pre-factor(D 0) and the activation energy(Q) of impurity diffusion are obtained.The diffusion coefficients above 700 K are sorted in the following order:DAl〉DCr〉DCo〉DTa〉DMo〉DRu〉DW〉D Re.It is found that there is a positive correlation between the atomic radius of the solute and the jump energy of Ni that results in the rotation of the solute-vacancy pair(E 1).The value of E 2-E 1(E 2 is the solute diffusion energy) and the correlation factor each also show a positive correlation.The larger atoms in the same series have lower diffusion activation energies and faster diffusion coefficients.展开更多
To have a better understand on the change of microstructure via kinetics, the diffusion behavior of Mg alloys is of special interest to researchers. Meanwhile, diffusion coefficients of Mg based alloys can explain and...To have a better understand on the change of microstructure via kinetics, the diffusion behavior of Mg alloys is of special interest to researchers. Meanwhile, diffusion coefficients of Mg based alloys can explain and represent their diffusion behavior well. The evolution of experimental and calculated methods for detecting and extracting diffusion coefficients was discussed briefly. The reasonable diffusion data, especially self-diffusion coefficients, impurity diffusion coefficients and inter-diffusion coefficients of Mg alloys, were reviewed in detail serving to design the Mg alloys with higher accuracy. Then the practical applications of diffusion coefficients of Mg alloys were summarized,including diffusional mobility establishing, precipitation simulation and mechanical properties prediction.展开更多
The horizontal diffusion coefficients of the operational model (T42L9) in numerical weather prediction are optimized by the steepest descent search of multi-dimensional optimization. In order to improve prediction acc...The horizontal diffusion coefficients of the operational model (T42L9) in numerical weather prediction are optimized by the steepest descent search of multi-dimensional optimization. In order to improve prediction accuracy in low latitudes, the optimum horizontal diffusion coefficients are chosen, with changing variation of the basic diffusion coefficient with the passage of time, and later forecasts are also made better. In view of the averages of forecast verifications of 9 cases, the forecasts with optimum diffusion coefficients are an improvement on operational forecasts. It means that the forecasts are got much better with optimum values of some important parameters by optimization in numerical weather prediction.展开更多
(The effect of liquid diffusion coefficients on the microstructure evolution during solidification of primary (Al) phase in Al356.1 alloy was investigated by means of the phase-field simulation using two sets of di...(The effect of liquid diffusion coefficients on the microstructure evolution during solidification of primary (Al) phase in Al356.1 alloy was investigated by means of the phase-field simulation using two sets of diffusion coefficients in liquid phase, while fixing other thermophysical and numerical parameters. The first set is only with impurity coefficients of liquid phase in Arrhenius formula representing only the temperature dependence. While the second set is with the well-established atomic mobility database representing both temperature and concentration dependence. For the second set of liquid diffusion coefficients, the effect of non-diagonal diffusion coefficients on the microstructure evolution in Al356.1 alloy during solidification was also analyzed. The differences were observed in the morphology, tip velocity and composition profile ahead of the tip of the dendrite due to the three cases of liquid diffusivities. The simulation results indicate that accurate databases of mobilities in the liquid phase are highly needed for the quantitative simulation of microstructural evolution during solidification.展开更多
The diffusion coefficients of l-lysine hydrochloride and I-arginine hydrochloride in their aqueous solutions at 25℃ were determined by the metallic diaphragm cell method which is characterized by accuracy, promptness...The diffusion coefficients of l-lysine hydrochloride and I-arginine hydrochloride in their aqueous solutions at 25℃ were determined by the metallic diaphragm cell method which is characterized by accuracy, promptness and convenience. Meanwhile, the densities and viscosities of the solutions were also determined. Based on all these data a semi-empirical model for correlating the diffusion coefficients of solid organic salts in their aqueous solutions at 25℃ was proposed. The fitting result of this model is comparatively satisfactory. Compared to a former model, Gordon Model, this model can avoid a number of difficulties and arduous work.展开更多
A piston-cylinder apparatus was established to measure the solubility and diffusivity of air in dimethyl silicone oils and in hydraulic oils based on the PVT state equation of air and the solution of unsteady one-dime...A piston-cylinder apparatus was established to measure the solubility and diffusivity of air in dimethyl silicone oils and in hydraulic oils based on the PVT state equation of air and the solution of unsteady one-dimensional diffusion equation.The measured diffusivity-temperature relation can be well fitted by the Arrhenius equation for engineering applications.The correlation between the solute diffusivity D and solvent viscosity μ is examined.In terms of Eyring's activation theory,the activation in the air-silicone-oil diffusion process is quite different from that in the momentum transport of the silicone oil:the activation entropy of the former is positive while that of latter is negative.However,the activation enthalpies of the two processes are in the same order of magnitude,which leads to the observation that Dμ/T is roughly constant.展开更多
To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content chan...To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxy- gen in the adhesive in adhesive/carbon fther reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analy-sis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of beth energy dispersive X-ray spectroscopy and elemental analysis. The de- termined results with EDX analysis are almost the same as those determined with elemental analysis and the results al- so show that the durability of the adhesive/carbon fther reinforced epoxy resin composite joints subjected to silane cou- pling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treat- ment.展开更多
The diffusion coefficients of aqueous solutions ofglycine, L-alanine, L-valine and L-isoleucine at 298.15 K were determined by holographic interferometry with accuracy and promptness while without disturbance. The den...The diffusion coefficients of aqueous solutions ofglycine, L-alanine, L-valine and L-isoleucine at 298.15 K were determined by holographic interferometry with accuracy and promptness while without disturbance. The density and viscosity of these solutions were also determined. According to original Gordon model, a model for correlating the diffusion coefficients of amino acids in aqueous solutions was developed and applied. The results showed that this model provided significant convenience in correlation of diffusion coefficients for amino acids system.展开更多
The diffusion coefficient of natural gas in foamy oil is one of the key parameters to evaluate the feasibility of gas injection for enhanced oil recovery in foamy oil reservoirs. In this paper, a PVT cell was used to ...The diffusion coefficient of natural gas in foamy oil is one of the key parameters to evaluate the feasibility of gas injection for enhanced oil recovery in foamy oil reservoirs. In this paper, a PVT cell was used to measure diffusion coefficients of natural gas in Venezuela foamy oil at high pressures, and a new method for deter- mining the diffusion coefficient in the foamy oil was de- veloped on the basis of experimental data. The effects of pressure and the types of the liquid phase on the diffusion coefficient of the natural gas were discussed. The results indicate that the diffusion coefficients of natural gas in foamy oil, saturated oil, and dead oil increase linearly with increasing pressure. The diffusion coefficient of natural gas in the foamy oil at 20 MPa was 2.93 times larger than that at 8.65 MPa. The diffusion coefficient of the natural gas in dead oil was 3.02 and 4.02 times than that of the natural gas in saturated oil and foamy oil when the pressure was 20 MPa. However, the gas content of foamy oil was 16.9 times higher than that of dead oil when the dissolution time and pressure were 20 MPa and 35.22 h, respectively.展开更多
The diffusion coefficients of aqueous L-threonine solutions were determined from 298.15 K to 328.15 K by the metallic diaphragm cell method with accuracy, promptness and convenience. Meanwhile, the densities and visco...The diffusion coefficients of aqueous L-threonine solutions were determined from 298.15 K to 328.15 K by the metallic diaphragm cell method with accuracy, promptness and convenience. Meanwhile, the densities and viscosities of the solutions were also determined and correlated. Based on a semi-empirical model for correlating the diffusion coefficients of some amino acids in their aqueous solutions, a new semi-empirical model for correlating the diffusion coefficients involving temperature was provided, which is more comprehensive and less experiment dependent compared to the previous model. The fitting results are satisfactory. Compared to a former model for correlating the diffusion coefficients of solid organic salts in their aqueous solutions, this model provides significant improvement in correlation of diffusion coefficients with different temperatures avoiding arduous work.展开更多
1 INTRODUCTIONKnowledge of the basic transport phenomena of ions in an ion exchange membrane isimportant for the application of such a membrane.Various studies on the developmentof mathematical models for predicting a...1 INTRODUCTIONKnowledge of the basic transport phenomena of ions in an ion exchange membrane isimportant for the application of such a membrane.Various studies on the developmentof mathematical models for predicting and correlating membrane transport rate havebeen published in recent years.More exact estimation of the diffusion coefficientshas been the subject of chief concern in many of these papers.For a bi-ionic systemwith the same valence,Sato et al.gave a method for estimating diffusion coefficients展开更多
L-Arginine is an important component of amino acid injection. Its diffusion in body fluid and blood is of key importance to understand drug diffusion and drug release. As a fundamental demand for study and being a con...L-Arginine is an important component of amino acid injection. Its diffusion in body fluid and blood is of key importance to understand drug diffusion and drug release. As a fundamental demand for study and being a considerably valuable reference for application, in this study, the diffusion coefficients of L-arginine in polyacrylamide(PAM) aqueous solution used as non-Newtonian fluid similar to blood and body fluid were measured using a holographic interferometer. The effects of interaction among molecules and solution concentration on diffusion were analyzed and discussed, respectively. Based on the obstruction-scaling model, a novel modified model was presented for predicting diffusivity of solute in non-Newtonian fluid. Good agreement was achieved between the calculated value and the experimental data.展开更多
The static and dynamic diffusion coefficients are important coefficients to describe the moisture transfer processes in particleboard. In this paper, the formula of culculating the static and dynamic diffusion coeffic...The static and dynamic diffusion coefficients are important coefficients to describe the moisture transfer processes in particleboard. In this paper, the formula of culculating the static and dynamic diffusion coefficients were deduced. At first, the static diffusion coefficients of four kinds of particleboards were determined by using diffusion cup method. The results demonstrated that the static diffusion coefficients parallel to panel surface were 10-20 times as large as that of perpendicular to panel surface for test boards. To determine both dynamic diffusion coefficients and surface emission coefficients of moisture in particleboards in one experimental period, specimens in four different thicknesses of each kind of particleboard were used in the experiment. Then the method of regression was used and the dynamic diffusion coefficients and surface emission coefficients were determined based on the slope and intercept of the regressive line.展开更多
The technique of real-time digital speckle pattern interferometry is p roposed to study diffusion of surfactants in hydrogel. The diffusion coefficient is simply and directly determined from the interferograms. An e...The technique of real-time digital speckle pattern interferometry is p roposed to study diffusion of surfactants in hydrogel. The diffusion coefficient is simply and directly determined from the interferograms. An example of diffus ion coefficient measurement of surfactant in agarose gel demonstrates the useful ness of the method. The results obtained are compared with the theoretical simul ating values.展开更多
The water absorption kinetics of cowpea and soybean hybrids were studied following the phenomenological models derived from Fick’s diffusion law. Significant intra and inter varietal variations were observed on the p...The water absorption kinetics of cowpea and soybean hybrids were studied following the phenomenological models derived from Fick’s diffusion law. Significant intra and inter varietal variations were observed on the physical characteristics of the seeds. The proposed Fick’s law of diffusion was shown to significantly describe the kinetic of water absorption irrespective of the variety and temperature. The effective diffusivities of the hybrids were shown to vary in the order Nagbaar > Nhyira > Tonaa > Anidaso and increased as the soaking temperature increased from 30<span><span><span style="font-family:;" "="">d°C<span> to 60</span>d°C<span>. The estimated values for water diffusion coefficients varied from 2.90 </span>×<span> 10<sup>-10</sup> to 6.75 </span>×<span> 10<sup>-10</sup> m<sup>2</sup>/s for cowpea and soybean hybrids. An Arrhenius-type equation described the strong temperature effect on the diffusion coefficient with activation energies ranging from 7.73 to 8.56 kJ/mol for cowpeas and 5.51 to 8.14 kJ/mol for soybeans.</span></span></span></span>展开更多
This study is an extension of the previous work done with ARS-680 Environmental Chamber. Drying is a complex operation that demands much energy and time. Drying is essentially important for preservation of ginger rhiz...This study is an extension of the previous work done with ARS-680 Environmental Chamber. Drying is a complex operation that demands much energy and time. Drying is essentially important for preservation of ginger rhizome. Drying of ginger was modeled, and then the effective diffusion coefficient and activation energy were determined. For this purpose, the experiments were done at six levels of varied temperatures: 10°C, 20°C, 30°C, 40°C, 50°C and 60°C. The values of effective diffusion coefficients obtained in this work for the variously treated ginger rhizomes closely agreed with the average effective diffusion coefficients of other notable authors who determined the drying kinetics and convective heat transfer coefficients of ginger slices.展开更多
The safety assessment of high-level radioactive waste repositories requires a high predictive accuracy for radionuclide diffusion and a comprehensive understanding of the diffusion mechanism.In this study,a through-di...The safety assessment of high-level radioactive waste repositories requires a high predictive accuracy for radionuclide diffusion and a comprehensive understanding of the diffusion mechanism.In this study,a through-diffusion method and six machine-learning methods were employed to investigate the diffusion of ReO_(4)^(−),HCrO_(4)^(−),and I−in saturated compacted bentonite under different salinities and compacted dry densities.The machine-learning models were trained using two datasets.One dataset contained six input features and 293 instances obtained from the diffusion database system of the Japan Atomic Energy Agency(JAEA-DDB)and 15 publications.The other dataset,comprising 15,000 pseudo-instances,was produced using a multi-porosity model and contained eight input features.The results indicate that the former dataset yielded a higher predictive accuracy than the latter.Light gradient-boosting exhibited a higher prediction accuracy(R2=0.92)and lower error(MSE=0.01)than the other machine-learning algorithms.In addition,Shapley Additive Explanations,Feature Importance,and Partial Dependence Plot analysis results indicate that the rock capacity factor and compacted dry density had the two most significant effects on predicting the effective diffusion coefficient,thereby offering valuable insights.展开更多
文摘This work is a simulation model with the LAMMPS calculation code of an electrode based on alkali metal oxides (lithium, sodium and potassium) using the Lennard Jones potential. For a multiplicity of 8*8*8, we studied a gap-free model using molecular dynamics. Physical quantities such as volume and pressure of the Na-O and Li-O systems exhibit similar behaviors around the thermodynamic ensembles NPT and NVE. However, for the Na2O system, at a minimum temperature value, we observe a range of total energy values;in contrast, for the Li2O system, a minimum energy corresponds to a range of temperatures. Finally, for physicochemical properties, we studied the diffusion coefficient and activation energy of lithium and potassium oxides around their melting temperatures. The order of magnitude of the diffusion coefficients is given by the relation Dli-O >DNa-O for the multiplicity 8*8*8, while for the activation energy, the order is well reversed EaNa-O > EaLi-O.
文摘This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studied;with and without gap. In this work, we present the structural, physical and chemical properties of the lithium, sodium and potassium electrodes. For the structural properties, the cohesive energy and the mesh parameters were calculated, revealing that, whatever the chemical element selected, the compact hexagonal hcp structure is the most stable, followed by the face-centred cubic CFC structure, and finally the BCC structure. The most stable structure is lithium, with a cohesion energy of -6570 eV, and the lowest bcc-hcp transition energy of -0.553 eV/atom, followed by sodium. For physical properties, kinetic and potential energies were calculated for each of the sectioned chemical elements, with lithium achieving the highest value. Finally, for the chemical properties, we studied the diffusion coefficient and the activation energy. Only potassium followed an opposite order to the other two, with the quantities with lacunae being greater than those without lacunae, whatever the multiplicity. The order of magnitude of the diffusion coefficients is given by the relationship D<sub>Li</sub> > D<sub>Na</sub> > D<sub>k</sub> for the multiplicity 6*6*6, while for the activation energy the order is reversed.
文摘The populations of urban centers in Congo-Brazzaville have decided to develop various methods of water storage (concrete or masonry underground tanks) for domestic use, due to shortages in the distribution of water through the public network. However, questions remain as to the physico-chemical quality of the water stored in these tanks, when these structures are built in wet and relatively polluted areas. This paper presents a model of pollutant diffusion through the cementitious matrix (concrete) of tank walls simulated at a buried reservoir. The results of the experimental and numerical simulations show that certain concrete parameters, such as porosity, permeability and diffusivity, have a significant influence on the transfer of pollutants through the concrete walls, thus altering the physico-chemical quality of the stored water. The numerical models (1D) used to predict pollutant transfer and the quality of the stored water are consistent with those of the optimal control for identifying the diffusion coefficient. Major ion concentrations appear to be correlated with system porosity and diffusion coefficient. Nevertheless, the identification of the diffusion coefficient from the optimal control method, based on an explicit numerical resolution of a finite volume PDE for the approximation of the experiment, is not consistent with that of the optimal control method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50971005)
文摘The diffusion coefficients of several alloying elements(Al,Mo,Co,Ta,Ru,W,Cr,Re) in Ni are directly calculated using the five-frequency model and the first principles density functional theory.The correlation factors provided by the five-frequency model are explicitly calculated.The calculated diffusion coefficients show their excellent agreement with the available experimental data.Both the diffusion pre-factor(D 0) and the activation energy(Q) of impurity diffusion are obtained.The diffusion coefficients above 700 K are sorted in the following order:DAl〉DCr〉DCo〉DTa〉DMo〉DRu〉DW〉D Re.It is found that there is a positive correlation between the atomic radius of the solute and the jump energy of Ni that results in the rotation of the solute-vacancy pair(E 1).The value of E 2-E 1(E 2 is the solute diffusion energy) and the correlation factor each also show a positive correlation.The larger atoms in the same series have lower diffusion activation energies and faster diffusion coefficients.
基金financially supported by the China Scholarship Council (Grant No: 202006890008), ChinaScience and Technology Committee of Shanghai (19010500400)+1 种基金the “111” project (D16002)the Independent Research Project of State Key Laboratory of Mechanical Transmissions (Grant No. SKLMT-ZZKT-2021M11)。
文摘To have a better understand on the change of microstructure via kinetics, the diffusion behavior of Mg alloys is of special interest to researchers. Meanwhile, diffusion coefficients of Mg based alloys can explain and represent their diffusion behavior well. The evolution of experimental and calculated methods for detecting and extracting diffusion coefficients was discussed briefly. The reasonable diffusion data, especially self-diffusion coefficients, impurity diffusion coefficients and inter-diffusion coefficients of Mg alloys, were reviewed in detail serving to design the Mg alloys with higher accuracy. Then the practical applications of diffusion coefficients of Mg alloys were summarized,including diffusional mobility establishing, precipitation simulation and mechanical properties prediction.
文摘The horizontal diffusion coefficients of the operational model (T42L9) in numerical weather prediction are optimized by the steepest descent search of multi-dimensional optimization. In order to improve prediction accuracy in low latitudes, the optimum horizontal diffusion coefficients are chosen, with changing variation of the basic diffusion coefficient with the passage of time, and later forecasts are also made better. In view of the averages of forecast verifications of 9 cases, the forecasts with optimum diffusion coefficients are an improvement on operational forecasts. It means that the forecasts are got much better with optimum values of some important parameters by optimization in numerical weather prediction.
基金Projects (51021063,51301208) supported by the National Natural Science Foundation of ChinaProject (GZ755) supported by Sino-German Center for Promotion of Science+1 种基金Project (2011CB610401) supported by the National Basic Research Program of ChinaProject supported by Shenghua Scholar Program of Central South University,China
文摘(The effect of liquid diffusion coefficients on the microstructure evolution during solidification of primary (Al) phase in Al356.1 alloy was investigated by means of the phase-field simulation using two sets of diffusion coefficients in liquid phase, while fixing other thermophysical and numerical parameters. The first set is only with impurity coefficients of liquid phase in Arrhenius formula representing only the temperature dependence. While the second set is with the well-established atomic mobility database representing both temperature and concentration dependence. For the second set of liquid diffusion coefficients, the effect of non-diagonal diffusion coefficients on the microstructure evolution in Al356.1 alloy during solidification was also analyzed. The differences were observed in the morphology, tip velocity and composition profile ahead of the tip of the dendrite due to the three cases of liquid diffusivities. The simulation results indicate that accurate databases of mobilities in the liquid phase are highly needed for the quantitative simulation of microstructural evolution during solidification.
文摘The diffusion coefficients of l-lysine hydrochloride and I-arginine hydrochloride in their aqueous solutions at 25℃ were determined by the metallic diaphragm cell method which is characterized by accuracy, promptness and convenience. Meanwhile, the densities and viscosities of the solutions were also determined. Based on all these data a semi-empirical model for correlating the diffusion coefficients of solid organic salts in their aqueous solutions at 25℃ was proposed. The fitting result of this model is comparatively satisfactory. Compared to a former model, Gordon Model, this model can avoid a number of difficulties and arduous work.
基金Supported by the National Natural Science Foundation of China (50675202)
文摘A piston-cylinder apparatus was established to measure the solubility and diffusivity of air in dimethyl silicone oils and in hydraulic oils based on the PVT state equation of air and the solution of unsteady one-dimensional diffusion equation.The measured diffusivity-temperature relation can be well fitted by the Arrhenius equation for engineering applications.The correlation between the solute diffusivity D and solvent viscosity μ is examined.In terms of Eyring's activation theory,the activation in the air-silicone-oil diffusion process is quite different from that in the momentum transport of the silicone oil:the activation entropy of the former is positive while that of latter is negative.However,the activation enthalpies of the two processes are in the same order of magnitude,which leads to the observation that Dμ/T is roughly constant.
基金Supported by Commission of Science Technology and Industry for National Defense of China(No.JPPT-115-477).
文摘To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxy- gen in the adhesive in adhesive/carbon fther reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analy-sis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of beth energy dispersive X-ray spectroscopy and elemental analysis. The de- termined results with EDX analysis are almost the same as those determined with elemental analysis and the results al- so show that the durability of the adhesive/carbon fther reinforced epoxy resin composite joints subjected to silane cou- pling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treat- ment.
基金Supported by the National 973 Program of China (No. 2003CB615701)the National 863 Project of China (No. 2003AA328020)the National Natural Science Foundation of China (No. 200276034)the Educational Ministry Doctor Foundation of China (No 2000005608).
文摘The diffusion coefficients of aqueous solutions ofglycine, L-alanine, L-valine and L-isoleucine at 298.15 K were determined by holographic interferometry with accuracy and promptness while without disturbance. The density and viscosity of these solutions were also determined. According to original Gordon model, a model for correlating the diffusion coefficients of amino acids in aqueous solutions was developed and applied. The results showed that this model provided significant convenience in correlation of diffusion coefficients for amino acids system.
基金financial support from the Major Subject of National Science and Technology (2011ZX05032-001)the Fundamental Research Funds for the Central Universities(NO.11CX06022A)
文摘The diffusion coefficient of natural gas in foamy oil is one of the key parameters to evaluate the feasibility of gas injection for enhanced oil recovery in foamy oil reservoirs. In this paper, a PVT cell was used to measure diffusion coefficients of natural gas in Venezuela foamy oil at high pressures, and a new method for deter- mining the diffusion coefficient in the foamy oil was de- veloped on the basis of experimental data. The effects of pressure and the types of the liquid phase on the diffusion coefficient of the natural gas were discussed. The results indicate that the diffusion coefficients of natural gas in foamy oil, saturated oil, and dead oil increase linearly with increasing pressure. The diffusion coefficient of natural gas in the foamy oil at 20 MPa was 2.93 times larger than that at 8.65 MPa. The diffusion coefficient of the natural gas in dead oil was 3.02 and 4.02 times than that of the natural gas in saturated oil and foamy oil when the pressure was 20 MPa. However, the gas content of foamy oil was 16.9 times higher than that of dead oil when the dissolution time and pressure were 20 MPa and 35.22 h, respectively.
基金Supported by the Educational Ministry Doctor Foundation of China (No. 2000005608).
文摘The diffusion coefficients of aqueous L-threonine solutions were determined from 298.15 K to 328.15 K by the metallic diaphragm cell method with accuracy, promptness and convenience. Meanwhile, the densities and viscosities of the solutions were also determined and correlated. Based on a semi-empirical model for correlating the diffusion coefficients of some amino acids in their aqueous solutions, a new semi-empirical model for correlating the diffusion coefficients involving temperature was provided, which is more comprehensive and less experiment dependent compared to the previous model. The fitting results are satisfactory. Compared to a former model for correlating the diffusion coefficients of solid organic salts in their aqueous solutions, this model provides significant improvement in correlation of diffusion coefficients with different temperatures avoiding arduous work.
基金Supported by the Post-doctoral Foundation of China
文摘1 INTRODUCTIONKnowledge of the basic transport phenomena of ions in an ion exchange membrane isimportant for the application of such a membrane.Various studies on the developmentof mathematical models for predicting and correlating membrane transport rate havebeen published in recent years.More exact estimation of the diffusion coefficientshas been the subject of chief concern in many of these papers.For a bi-ionic systemwith the same valence,Sato et al.gave a method for estimating diffusion coefficients
基金Supported by the National Natural Science Foundation of China (20476073).
文摘L-Arginine is an important component of amino acid injection. Its diffusion in body fluid and blood is of key importance to understand drug diffusion and drug release. As a fundamental demand for study and being a considerably valuable reference for application, in this study, the diffusion coefficients of L-arginine in polyacrylamide(PAM) aqueous solution used as non-Newtonian fluid similar to blood and body fluid were measured using a holographic interferometer. The effects of interaction among molecules and solution concentration on diffusion were analyzed and discussed, respectively. Based on the obstruction-scaling model, a novel modified model was presented for predicting diffusivity of solute in non-Newtonian fluid. Good agreement was achieved between the calculated value and the experimental data.
文摘The static and dynamic diffusion coefficients are important coefficients to describe the moisture transfer processes in particleboard. In this paper, the formula of culculating the static and dynamic diffusion coefficients were deduced. At first, the static diffusion coefficients of four kinds of particleboards were determined by using diffusion cup method. The results demonstrated that the static diffusion coefficients parallel to panel surface were 10-20 times as large as that of perpendicular to panel surface for test boards. To determine both dynamic diffusion coefficients and surface emission coefficients of moisture in particleboards in one experimental period, specimens in four different thicknesses of each kind of particleboard were used in the experiment. Then the method of regression was used and the dynamic diffusion coefficients and surface emission coefficients were determined based on the slope and intercept of the regressive line.
文摘The technique of real-time digital speckle pattern interferometry is p roposed to study diffusion of surfactants in hydrogel. The diffusion coefficient is simply and directly determined from the interferograms. An example of diffus ion coefficient measurement of surfactant in agarose gel demonstrates the useful ness of the method. The results obtained are compared with the theoretical simul ating values.
文摘The water absorption kinetics of cowpea and soybean hybrids were studied following the phenomenological models derived from Fick’s diffusion law. Significant intra and inter varietal variations were observed on the physical characteristics of the seeds. The proposed Fick’s law of diffusion was shown to significantly describe the kinetic of water absorption irrespective of the variety and temperature. The effective diffusivities of the hybrids were shown to vary in the order Nagbaar > Nhyira > Tonaa > Anidaso and increased as the soaking temperature increased from 30<span><span><span style="font-family:;" "="">d°C<span> to 60</span>d°C<span>. The estimated values for water diffusion coefficients varied from 2.90 </span>×<span> 10<sup>-10</sup> to 6.75 </span>×<span> 10<sup>-10</sup> m<sup>2</sup>/s for cowpea and soybean hybrids. An Arrhenius-type equation described the strong temperature effect on the diffusion coefficient with activation energies ranging from 7.73 to 8.56 kJ/mol for cowpeas and 5.51 to 8.14 kJ/mol for soybeans.</span></span></span></span>
文摘This study is an extension of the previous work done with ARS-680 Environmental Chamber. Drying is a complex operation that demands much energy and time. Drying is essentially important for preservation of ginger rhizome. Drying of ginger was modeled, and then the effective diffusion coefficient and activation energy were determined. For this purpose, the experiments were done at six levels of varied temperatures: 10°C, 20°C, 30°C, 40°C, 50°C and 60°C. The values of effective diffusion coefficients obtained in this work for the variously treated ginger rhizomes closely agreed with the average effective diffusion coefficients of other notable authors who determined the drying kinetics and convective heat transfer coefficients of ginger slices.
基金the Key Program of National Natural Science Foundation of China(No.12335008),the Postgraduate Research and Innovation Project of Huzhou University(No.2023KYCX62)the Scientific Research Fund of Zhejiang Provincial Education Department(No.Y202352712)the Huzhou science and technology planning project(No.2021GZ60)。
文摘The safety assessment of high-level radioactive waste repositories requires a high predictive accuracy for radionuclide diffusion and a comprehensive understanding of the diffusion mechanism.In this study,a through-diffusion method and six machine-learning methods were employed to investigate the diffusion of ReO_(4)^(−),HCrO_(4)^(−),and I−in saturated compacted bentonite under different salinities and compacted dry densities.The machine-learning models were trained using two datasets.One dataset contained six input features and 293 instances obtained from the diffusion database system of the Japan Atomic Energy Agency(JAEA-DDB)and 15 publications.The other dataset,comprising 15,000 pseudo-instances,was produced using a multi-porosity model and contained eight input features.The results indicate that the former dataset yielded a higher predictive accuracy than the latter.Light gradient-boosting exhibited a higher prediction accuracy(R2=0.92)and lower error(MSE=0.01)than the other machine-learning algorithms.In addition,Shapley Additive Explanations,Feature Importance,and Partial Dependence Plot analysis results indicate that the rock capacity factor and compacted dry density had the two most significant effects on predicting the effective diffusion coefficient,thereby offering valuable insights.