Diffusion curves can be used to generate vector graphics images with smooth variation by solving Poisson equations. However, using the classical diffusion curve model, it is difficult to ensure that the generated diff...Diffusion curves can be used to generate vector graphics images with smooth variation by solving Poisson equations. However, using the classical diffusion curve model, it is difficult to ensure that the generated diffusion image satisfies desired constraints. In this paper, we develop a model for producing a diffusion image by solving a diffusion equation with diffusion coefficients, in which color layers and coefficient layers are introduced to facilitate the generation of the diffusion image. Doing so allows us to impose various constraints on the diffusion image, such as diffusion strength, diffusion direction,diffusion points, etc., in a unified computational framework. Various examples are presented in this paper to illustrate the capabilities of our model.展开更多
Multiple fractured horizontal well(MFHW) is widely applied in the development of shale gas. To investigate the gas flow characteristics in shale, based on a new dual mechanism triple continuum model, an analytical sol...Multiple fractured horizontal well(MFHW) is widely applied in the development of shale gas. To investigate the gas flow characteristics in shale, based on a new dual mechanism triple continuum model, an analytical solution for MFHW surrounded by stimulated reservoir volume(SRV) was presented. Pressure and pressure derivative curves were used to identify the characteristics of flow regimes in shale. Blasingame type curves were established to evaluate the effects of sensitive parameters on rate decline curves, which indicates that the whole flow regimes could be divided into transient flow, feeding flow, and pseudo steady state flow. In feeding flow regime, the production of gas well is gradually fed by adsorbed gases in sub matrix, and free gases in matrix. The proportion of different gas sources to well production is determined by such parameters as storability ratios of triple continuum, transmissibility coefficients controlled by dual flow mechanism and fracture conductivity.展开更多
基金supported by the National Natural Science Foundation of China (No. 61379072)the National Key R&D Program of China (No. 2016YFB1001501)the Fundamental Research Funds for the Central Universities (No. 2017XZZX009-03)
文摘Diffusion curves can be used to generate vector graphics images with smooth variation by solving Poisson equations. However, using the classical diffusion curve model, it is difficult to ensure that the generated diffusion image satisfies desired constraints. In this paper, we develop a model for producing a diffusion image by solving a diffusion equation with diffusion coefficients, in which color layers and coefficient layers are introduced to facilitate the generation of the diffusion image. Doing so allows us to impose various constraints on the diffusion image, such as diffusion strength, diffusion direction,diffusion points, etc., in a unified computational framework. Various examples are presented in this paper to illustrate the capabilities of our model.
基金Project(2011ZX05015)supported by Important National Science and Technology Specific Projects of the "Twelfth Five-years" Plan Period,China
文摘Multiple fractured horizontal well(MFHW) is widely applied in the development of shale gas. To investigate the gas flow characteristics in shale, based on a new dual mechanism triple continuum model, an analytical solution for MFHW surrounded by stimulated reservoir volume(SRV) was presented. Pressure and pressure derivative curves were used to identify the characteristics of flow regimes in shale. Blasingame type curves were established to evaluate the effects of sensitive parameters on rate decline curves, which indicates that the whole flow regimes could be divided into transient flow, feeding flow, and pseudo steady state flow. In feeding flow regime, the production of gas well is gradually fed by adsorbed gases in sub matrix, and free gases in matrix. The proportion of different gas sources to well production is determined by such parameters as storability ratios of triple continuum, transmissibility coefficients controlled by dual flow mechanism and fracture conductivity.