Objective: To assess if diffusion-weighted magnetic resonance (MR) imaging without apparent diffusion coefficient (ADC) values provides added diagnostic value in combination with conventional MR imaging in the de...Objective: To assess if diffusion-weighted magnetic resonance (MR) imaging without apparent diffusion coefficient (ADC) values provides added diagnostic value in combination with conventional MR imaging in the detection and characterization of small nodules in cirrhotic liver. Methods: Two observers retrospectively and independently analyzed 86 nodules (_〈3 em) certified pathologically in 33 patients with liver cirrhosis, including 48 hepatocellular carcinoma (HCC) nodules, 13 high-grade dysplastic nodules (HDN), 10 low-grade dysplastic nodules (LDNs) and 15 other benign nodules. All these focal nodules were evaluated with conventional MR images (Tl-weighted, T2-weighted and dynamic gadolinium-enhanced images) and breath-hold diffusion-weighted images (DWI) (b=500 s/mm2). The nodules were classified by using a scale of 1-3 (1, not seen; 3, well seen) on DWI for qualitative assessment. These small nodules were characterized by two radiologists. ADC values weren't measured. The diagnostic performance of the combined DWI-conventional images and the conventional images alone was evaluated using receiver operating characteristic (ROC) curves. The area under the curves (Az), sensitivity and specificity values for characterizing different small nodules were also calculated. Results: Among 48 HCC nodules, 33 (68.8%) were graded as 3 (well seen), 6 (12.5%) were graded as 2 (partially obscured), and 9 weren't seen on DWI. Among 13 HDNs, there were 3 (23.1%) and 4 (30.8%) graded as 3 and 2 respectively. Five (50%) of 10 benign nodules were partially obscured and slightly hyperintense. For 86 nodules, the average diagnostic accuracy of combined DWI-conventional images was 82.56%, which was increased significantly compared with conventional MR images with 76.17%. For HCC and HDN, the diagnostic accuracy of combined DWI-conventional images increased from 78.69% to 86.07 %. Conclusions: Diffusion-weighted MR imaging does provide added diagnostic value in the detection and characterization of HDN and HCC, and it may not be helpful for LDN and regenerative nodule (RN) in cirrhotic liver.展开更多
Summary: The chronological and spatial rules of changes during focal cerebral ischemia and reperfusion in different brain regions with magnetic resonance diffusion-weighted imaging (DWI) in a model of occlusion of ...Summary: The chronological and spatial rules of changes during focal cerebral ischemia and reperfusion in different brain regions with magnetic resonance diffusion-weighted imaging (DWI) in a model of occlusion of middle cerebral artery (MCAO) and the development of cytotoxic edema in acute phase were explored. Fifteen healthy S-D rats with MCA occluded by thread-emboli were randomly divided into three groups. 15 min after the operation, the serial imaging was scanned on DWI for the three groups. The relative mean signal intensity (RMSI) of the frontal lobe, parietal lobe, lateral cauda-putamen, medial cauda-putamen and the volume of regions of hyperintense signal on DWI were calculated. After the last DWI scanning, T2WI was performed for the three groups. After 15 rain ischemia, the rats was presented hyperintense signals on DWI. The regions of hyperintense signal were enlarged with prolonging ischemia time. The regions of hyperintense signal were back to normal after 60 min reperfusion with a small part remaining to show hyperintense signal. The RMSIs of parietal lobe and lateral cauda-putamen were higher than that of the frontal lobe and medial cauda-putamen both in ischemia phase and recanalization phase. The three groups were normal on T2WI imaging. DWI had good sensitivity to acute cerebral ischemia, which was used to study the chronological and spatial rules of development of early cell edema in ischemia regions.展开更多
BACKGROUND It is evident that an accurate evaluation of T and N stage rectal cancer is essential for treatment planning.It has not been extensively investigated whether texture features derived from diffusion-weighted...BACKGROUND It is evident that an accurate evaluation of T and N stage rectal cancer is essential for treatment planning.It has not been extensively investigated whether texture features derived from diffusion-weighted imaging(DWI)images and apparent diffusion coefficient(ADC)maps are associated with the extent of local invasion(pathological stage T1-2 vs T3-4)and nodal involvement(pathological stage N0 vs N1-2)in rectal cancer.AIM To predict different stages of rectal cancer using texture analysis based on DWI images and ADC maps.METHODS One hundred and fifteen patients with pathologically proven rectal cancer,who underwent preoperative magnetic resonance imaging,including DWI,were enrolled,retrospectively.The ADC measurements(ADCmean,ADCmin,ADCmax)as well as texture features,including the gray level co-occurrence matrix parameters,the gray level run-length matrix parameters and wavelet parameters were calculated based on DWI(b=0 and b=1000)images and the ADC maps.Independent sample t-tests or Mann-Whitney U tests were used for statistical analysis.Multivariate logistic regression analysis was conducted to establish the models.The predictive performance was validated by receiver operating characteristic curve analysis.RESULTS Dissimilarity,sum average,information correlation and run-length nonuniformity from DWIb=0 images,gray level nonuniformity,run percentage and run-length nonuniformity from DWIb=1000 images,and dissimilarity and run percentage from ADC maps were found to be independent predictors of local invasion(stage T3-4).The area under the operating characteristic curve of the model reached 0.793 with a sensitivity of 78.57%and a specificity of 74.19%.Sum average,gray level nonuniformity and the horizontal components of symlet transform(SymletH)from DWIb=0 images,sum average,information correlation,long run low gray level emphasis and SymletH from DWIb=1000 images,and ADCmax,ADCmean and information correlation from ADC maps were identified as independent predictors of nodal involvement.The area under the operating characteristic curve of the model reached 0.802 with a sensitivity of 80.77%and a specificity of 68.25%.CONCLUSION Texture features extracted from DWI images and ADC maps are useful clues for predicting pathological T and N stages in rectal cancer.展开更多
BACKGROUND: Because magnetic resonance diffusion-weighted imaging is sensitive to water molecule movement, it has particular advantages for early diagnosis of cerebral infarction. However, the relationship between ap...BACKGROUND: Because magnetic resonance diffusion-weighted imaging is sensitive to water molecule movement, it has particular advantages for early diagnosis of cerebral infarction. However, the relationship between apparent diffusion coefficient changes with ischemia time, particularly relative apparent diffusion coefficient and tissue pathological changes remains controversial. OBJECTIVE: To explore the correlation between apparent diffusion coefficient changes and pathologic changes in hyperacute cerebral infarction. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment of neuroimaging. The study was performed at the Laboratory of Radiology Department, Longgang Central Hospital of Shenzhen from October 2007 to October 2008. MATERIALS: Magnetic resonance scanner was purchased from Philips Medical Systems, Best, the Netherlands. METHODS: A total of 42 healthy, adult, New Zealand rabbits were randomly assigned into sham-operation, ischemia 0.5-, 1-, 2-, 3-, 4-, and 6-hour groups, with six animals in each group. Local cerebral ischemia model was established by right middle cerebral artery occlusion, and cranial MRI scanning and pathologic observation were performed, respectively, at 0.5, 1,2, 3, 4, and 6 hours following ischemia. The middle cerebral artery of sham-operation group was only exposed, but not occluded. Images at the above-mentioned time points were also collected. MAIN OUTCOME MEASURES: Apparent diffusion coefficient and relative apparent diffusion coefficient values of abnormal signal on diffusion-weighted imaging were calculated and compared with pathological changes in the ischemic region. RESULTS: No abnormal diffusion-weighted imaging signals or pathological changes were observed in the sham-operation group. Abnormal signal intensity on diffusion-weighted imaging was first observed in the 0.5-hour group. Apparent diffusion coefficient and relative apparent diffusion coefficient values decreased in all middle cerebral artery occlusion rabbits and reached lowest levels at 3 hours, followed by a gradual increase. The right ischemic basal ganglia region with high signal intensity on diffusion-weighted imaging extended with increasing time of occlusion, and the pathologic outcome corresponded with MRI changes. CONCLUSION: Relative apparent diffusion coefficient values changed regularly with ischemia time and displayed good correspondence to pathological manifestations.展开更多
BACKGROUND Diffusion-weighted imaging(DWI)has been developed to stage liver fibrosis.However,its diagnostic performance is inconsistent among studies.Therefore,it is worth studying the diagnostic value of various diff...BACKGROUND Diffusion-weighted imaging(DWI)has been developed to stage liver fibrosis.However,its diagnostic performance is inconsistent among studies.Therefore,it is worth studying the diagnostic value of various diffusion models for liver fibrosis in one cohort.AIM To evaluate the clinical potential of six diffusion-weighted models in liver fibrosis staging and compare their diagnostic performances.METHODS This prospective study enrolled 59 patients suspected of liver disease and scheduled for liver biopsy and 17 healthy participants.All participants underwent multi-b value DWI.The main DWI-derived parameters included Mono-apparent diffusion coefficient(ADC)from mono-exponential DWI,intravoxel incoherent motion model-derived true diffusion coefficient(IVIM-D),diffusion kurtosis imaging-derived apparent diffusivity(DKI-MD),stretched exponential model-derived distributed diffusion coefficient(SEM-DDC),fractional order calculus(FROC)model-derived diffusion coefficient(FROC-D)and FROC model-derived microstructural quantity(FROC-μ),and continuous-time random-walk(CTRW)model-derived anomalous diffusion coefficient(CTRW-D)and CTRW model-derived temporal diffusion heterogeneity index(CTRW-α).The correlations between DWI-derived parameters and fibrosis stages and the parameters’diagnostic efficacy in detecting significant fibrosis(SF)were assessed and compared.RESULTS CTRW-D(r=-0.356),CTRW-α(r=-0.297),DKI-MD(r=-0.297),FROC-D(r=-0.350),FROC-μ(r=-0.321),IVIM-D(r=-0.251),Mono-ADC(r=-0.362),and SEM-DDC(r=-0.263)were significantly correlated with fibrosis stages.The areas under the ROC curves(AUCs)of the combined index of the six models for distinguishing SF(0.697-0.747)were higher than each of the parameters alone(0.524-0.719).The DWI models’ability to detect SF was similar.The combined index of CTRW model parameters had the highest AUC(0.747).CONCLUSION The DWI models were similarly valuable in distinguishing SF in patients with liver disease.The combined index of CTRW parameters had the highest AUC.展开更多
BACKGROUND Chronic hepatitis C(CHC)is a health burden with consequent morbidity and mortality.Liver biopsy is the gold standard for evaluating fibrosis and assessing disease severity and prognostic purposes post-treat...BACKGROUND Chronic hepatitis C(CHC)is a health burden with consequent morbidity and mortality.Liver biopsy is the gold standard for evaluating fibrosis and assessing disease severity and prognostic purposes post-treatment.Noninvasive altern-atives for liver biopsy such as transient elastography(TE)and diffusion-weighted magnetic resonance imaging(DW-MRI)are critical needs.AIM To evaluate TE and DW-MRI as noninvasive tools for predicting liver fibrosis in children with CHC.METHODS This prospective cross-sectional study initially recruited 100 children with CHC virus infection.Sixty-four children completed the full set of investigations including liver stiffness measurement(LSM)using TE and measurement of apparent diffusion coefficient(ADC)of the liver and spleen using DW-MRI.Liver biopsies were evaluated for fibrosis using Ishak scoring system.LSM and liver and spleen ADC were compared in different fibrosis stages and correlation analysis was performed with histopathological findings and other laboratory parameters.RESULTS Most patients had moderate fibrosis(73.5%)while 26.5%had mild fibrosis.None had severe fibrosis or cirrhosis.The majority(68.8%)had mild activity,while only 7.8%had moderate activity.Ishak scores had a significant direct correlation with LSM(P=0.008)and were negatively correlated with both liver and spleen ADC but with no statistical significance(P=0.086 and P=0.145,respectively).Similarly,histopatho-logical activity correlated significantly with LSM(P=0.002)but not with liver or spleen ADC(P=0.84 and 0.98 respectively).LSM and liver ADC were able to significantly discriminate F3 from lower fibrosis stages(area under the curve=0.700 and 0.747,respectively)with a better performance of liver ADC.CONCLUSION TE and liver ADC were helpful in predicting significant fibrosis in children with chronic hepatitis C virus infection with a better performance of liver ADC.展开更多
BACKGROUND About 10%-31% of colorectal liver metastases(CRLM)patients would concomitantly show hepatic lymph node metastases(LNM),which was considered as sign of poor biological behavior and a relative contraindicatio...BACKGROUND About 10%-31% of colorectal liver metastases(CRLM)patients would concomitantly show hepatic lymph node metastases(LNM),which was considered as sign of poor biological behavior and a relative contraindication for liver resection.Up to now,there’s still lack of reliable preoperative methods to assess the status of hepatic lymph nodes in patients with CRLM,except for pathology examination of lymph node after resection.AIM To compare the ability of mono-exponential,bi-exponential,and stretchedexponential diffusion-weighted imaging(DWI)models in distinguishing between benign and malignant hepatic lymph nodes in patients with CRLM who received neoadjuvant chemotherapy prior to surgery.METHODS In this retrospective study,97 CRLM patients with pathologically confirmed hepatic lymph node status underwent magnetic resonance imaging,including DWI with ten b values before and after chemotherapy.Various parameters,such as the apparent diffusion coefficient from the mono-exponential model,and the true diffusion coefficient,the pseudo-diffusion coefficient,and the perfusion fraction derived from the intravoxel incoherent motion model,along with distributed diffusion coefficient(DDC)andαfrom the stretched-exponential model(SEM),were measured.The parameters before and after chemotherapy were compared between positive and negative hepatic lymph node groups.A nomogram was constructed to predict the hepatic lymph node status.The reliability and agreement of the measurements were assessed using the coefficient of variation and intraclass correlation coefficient.RESULTS Multivariate analysis revealed that the pre-treatment DDC value and the short diameter of the largest lymph node after treatment were independent predictors of metastatic hepatic lymph nodes.A nomogram combining these two factors demonstrated excellent performance in distinguishing between benign and malignant lymph nodes in CRLM patients,with an area under the curve of 0.873.Furthermore,parameters from SEM showed substantial repeatability.CONCLUSION The developed nomogram,incorporating the pre-treatment DDC and the short axis of the largest lymph node,can be used to predict the presence of hepatic LNM in CRLM patients undergoing chemotherapy before surgery.This nomogram was proven to be more valuable,exhibiting superior diagnostic performance compared to quantitative parameters derived from multiple b values of DWI.The nomogram can serve as a preoperative assessment tool for determining the status of hepatic lymph nodes and aiding in the decision-making process for surgical treatment in CRLM patients.展开更多
Dear Editor,This letter proposes to integrate dendritic learnable network architecture with Vision Transformer to improve the accuracy of image recognition.In this study,based on the theory of dendritic neurons in neu...Dear Editor,This letter proposes to integrate dendritic learnable network architecture with Vision Transformer to improve the accuracy of image recognition.In this study,based on the theory of dendritic neurons in neuroscience,we design a network that is more practical for engineering to classify visual features.Based on this,we propose a dendritic learning-incorporated vision Transformer(DVT),which out-performs other state-of-the-art methods on three image recognition benchmarks.展开更多
A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The ne...A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations.展开更多
Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosph...Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images.展开更多
The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese...The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.展开更多
Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but...Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but also to dayglow emissions produced by photoelectrons induced by sunlight.Nightglow emissions and scattered sunlight can contribute to the background signal.To fully utilize such images in space science,background contamination must be removed to isolate the auroral signal.Here we outline a data-driven approach to modeling the background intensity in multiple images by formulating linear inverse problems based on B-splines and spherical harmonics.The approach is robust,flexible,and iteratively deselects outliers,such as auroral emissions.The final model is smooth across the terminator and accounts for slow temporal variations and large-scale asymmetries in the dayglow.We demonstrate the model by using the three far ultraviolet cameras on the Imager for Magnetopause-to-Aurora Global Exploration(IMAGE)mission.The method can be applied to historical missions and is relevant for upcoming missions,such as the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.展开更多
The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and chara...The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and characteristics of discontinuities.It ignores the influence of mineral composition and shows a deficiency in assessing the integrity coefficient.In this context,hyperspectral imaging and digital panoramic borehole camera technologies are applied to analyze the mineral content and integrity of rock mass.Based on the carbonate mineral content and fissure area ratio,the strength reduction factor and integrity coefficient are calculated to improve the GSI evaluation method.According to the results of mineral classification and fissure identification,the strength reduction factor and integrity coefficient increase with the depth of rock mass.The rock mass GSI calculated by the improved method is mainly concentrated between 40 and 60,which is close to the calculation results of the traditional method.The GSI error rates obtained by the two methods are mostly less than 10%,indicating the rationality of the hyperspectral-digital borehole image coupled evaluation method.Moreover,the sensitivity of the fissure area ratio(Sr)to GSI is greater than that of the strength reduction factor(a),which means the proposed GSI is suitable for rocks with significant fissure development.The improved method reduces the influence of subjective factors and provides a reliable index for the deterioration evaluation of rock mass.展开更多
Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts ...Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts and restore texture completely in OCT images.We proposed a deep learning-based inpainting method of saturation artifacts in this paper.The generation mechanism of saturation artifacts was analyzed,and experimental and simulated datasets were built based on the mechanism.Enhanced super-resolution generative adversarial networks were trained by the clear–saturated phantom image pairs.The perfect reconstructed results of experimental zebrafish and thyroid OCT images proved its feasibility,strong generalization,and robustness.展开更多
Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the sof...Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the soft X-ray Imager,an initial characterisation of the devices has been carried out to give a baseline performance level.Three CCDs have been characterised,the two flight devices and the flight spa re.This has been carried out at the Open University in a bespo ke cleanroom measure ment facility.The results show that there is a cluster of bright pixels in the flight spa re which increases in size with tempe rature.However at the nominal ope rating tempe rature(-120℃) it is within the procure ment specifications.Overall,the devices meet the specifications when ope rating at -120℃ in 6 × 6 binned frame transfer science mode.The se rial charge transfer inefficiency degrades with temperature in full frame mode.However any charge losses are recovered when binning/frame transfer is implemented.展开更多
Introduction: Ultrafast latest developments in artificial intelligence (ΑΙ) have recently multiplied concerns regarding the future of robotic autonomy in surgery. However, the literature on the topic is still scarce...Introduction: Ultrafast latest developments in artificial intelligence (ΑΙ) have recently multiplied concerns regarding the future of robotic autonomy in surgery. However, the literature on the topic is still scarce. Aim: To test a novel AI commercially available tool for image analysis on a series of laparoscopic scenes. Methods: The research tools included OPENAI CHATGPT 4.0 with its corresponding image recognition plugin which was fed with a list of 100 laparoscopic selected snapshots from common surgical procedures. In order to score reliability of received responses from image-recognition bot, two corresponding scales were developed ranging from 0 - 5. The set of images was divided into two groups: unlabeled (Group A) and labeled (Group B), and according to the type of surgical procedure or image resolution. Results: AI was able to recognize correctly the context of surgical-related images in 97% of its reports. For the labeled surgical pictures, the image-processing bot scored 3.95/5 (79%), whilst for the unlabeled, it scored 2.905/5 (58.1%). Phases of the procedure were commented in detail, after all successful interpretations. With rates 4 - 5/5, the chatbot was able to talk in detail about the indications, contraindications, stages, instrumentation, complications and outcome rates of the operation discussed. Conclusion: Interaction between surgeon and chatbot appears to be an interesting frontend for further research by clinicians in parallel with evolution of its complex underlying infrastructure. In this early phase of using artificial intelligence for image recognition in surgery, no safe conclusions can be drawn by small cohorts with commercially available software. Further development of medically-oriented AI software and clinical world awareness are expected to bring fruitful information on the topic in the years to come.展开更多
Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unman...Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned aerial vehicle(UAV)imagery.Addressing these limitations,we propose a hybrid transformer-based detector,H-DETR,and enhance it for dense small objects,leading to an accurate and efficient model.Firstly,we introduce a hybrid transformer encoder,which integrates a convolutional neural network-based cross-scale fusion module with the original encoder to handle multi-scale feature sequences more efficiently.Furthermore,we propose two novel strategies to enhance detection performance without incurring additional inference computation.Query filter is designed to cope with the dense clustering inherent in drone-captured images by counteracting similar queries with a training-aware non-maximum suppression.Adversarial denoising learning is a novel enhancement method inspired by adversarial learning,which improves the detection of numerous small targets by counteracting the effects of artificial spatial and semantic noise.Extensive experiments on the VisDrone and UAVDT datasets substantiate the effectiveness of our approach,achieving a significant improvement in accuracy with a reduction in computational complexity.Our method achieves 31.9%and 21.1%AP on the VisDrone and UAVDT datasets,respectively,and has a faster inference speed,making it a competitive model in UAV image object detection.展开更多
Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ...Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second.展开更多
Watermarks can provide reliable and secure copyright protection for optical coherence tomography(OCT)fundus images.The effective image segmentation is helpful for promoting OCT image watermarking.However,OCT images ha...Watermarks can provide reliable and secure copyright protection for optical coherence tomography(OCT)fundus images.The effective image segmentation is helpful for promoting OCT image watermarking.However,OCT images have a large amount of low-quality data,which seriously affects the performance of segmentationmethods.Therefore,this paper proposes an effective segmentation method for OCT fundus image watermarking using a rough convolutional neural network(RCNN).First,the rough-set-based feature discretization module is designed to preprocess the input data.Second,a dual attention mechanism for feature channels and spatial regions in the CNN is added to enable the model to adaptively select important information for fusion.Finally,the refinement module for enhancing the extraction power of multi-scale information is added to improve the edge accuracy in segmentation.RCNN is compared with CE-Net and MultiResUNet on 83 gold standard 3D retinal OCT data samples.The average dice similarly coefficient(DSC)obtained by RCNN is 6%higher than that of CE-Net.The average 95 percent Hausdorff distance(95HD)and average symmetric surface distance(ASD)obtained by RCNN are 32.4%and 33.3%lower than those of MultiResUNet,respectively.We also evaluate the effect of feature discretization,as well as analyze the initial learning rate of RCNN and conduct ablation experiments with the four different models.The experimental results indicate that our method can improve the segmentation accuracy of OCT fundus images,providing strong support for its application in medical image watermarking.展开更多
Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely exp...Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet.展开更多
基金supported by the Capital Medical Development Foundation(Grant No.2011-2015-02)the National Basic Research Program of China (973 Program)(Grant No.2011CB707705)the Capital Characteristic Clinical Application Research(Grant No.Z121107001012115)
文摘Objective: To assess if diffusion-weighted magnetic resonance (MR) imaging without apparent diffusion coefficient (ADC) values provides added diagnostic value in combination with conventional MR imaging in the detection and characterization of small nodules in cirrhotic liver. Methods: Two observers retrospectively and independently analyzed 86 nodules (_〈3 em) certified pathologically in 33 patients with liver cirrhosis, including 48 hepatocellular carcinoma (HCC) nodules, 13 high-grade dysplastic nodules (HDN), 10 low-grade dysplastic nodules (LDNs) and 15 other benign nodules. All these focal nodules were evaluated with conventional MR images (Tl-weighted, T2-weighted and dynamic gadolinium-enhanced images) and breath-hold diffusion-weighted images (DWI) (b=500 s/mm2). The nodules were classified by using a scale of 1-3 (1, not seen; 3, well seen) on DWI for qualitative assessment. These small nodules were characterized by two radiologists. ADC values weren't measured. The diagnostic performance of the combined DWI-conventional images and the conventional images alone was evaluated using receiver operating characteristic (ROC) curves. The area under the curves (Az), sensitivity and specificity values for characterizing different small nodules were also calculated. Results: Among 48 HCC nodules, 33 (68.8%) were graded as 3 (well seen), 6 (12.5%) were graded as 2 (partially obscured), and 9 weren't seen on DWI. Among 13 HDNs, there were 3 (23.1%) and 4 (30.8%) graded as 3 and 2 respectively. Five (50%) of 10 benign nodules were partially obscured and slightly hyperintense. For 86 nodules, the average diagnostic accuracy of combined DWI-conventional images was 82.56%, which was increased significantly compared with conventional MR images with 76.17%. For HCC and HDN, the diagnostic accuracy of combined DWI-conventional images increased from 78.69% to 86.07 %. Conclusions: Diffusion-weighted MR imaging does provide added diagnostic value in the detection and characterization of HDN and HCC, and it may not be helpful for LDN and regenerative nodule (RN) in cirrhotic liver.
文摘Summary: The chronological and spatial rules of changes during focal cerebral ischemia and reperfusion in different brain regions with magnetic resonance diffusion-weighted imaging (DWI) in a model of occlusion of middle cerebral artery (MCAO) and the development of cytotoxic edema in acute phase were explored. Fifteen healthy S-D rats with MCA occluded by thread-emboli were randomly divided into three groups. 15 min after the operation, the serial imaging was scanned on DWI for the three groups. The relative mean signal intensity (RMSI) of the frontal lobe, parietal lobe, lateral cauda-putamen, medial cauda-putamen and the volume of regions of hyperintense signal on DWI were calculated. After the last DWI scanning, T2WI was performed for the three groups. After 15 rain ischemia, the rats was presented hyperintense signals on DWI. The regions of hyperintense signal were enlarged with prolonging ischemia time. The regions of hyperintense signal were back to normal after 60 min reperfusion with a small part remaining to show hyperintense signal. The RMSIs of parietal lobe and lateral cauda-putamen were higher than that of the frontal lobe and medial cauda-putamen both in ischemia phase and recanalization phase. The three groups were normal on T2WI imaging. DWI had good sensitivity to acute cerebral ischemia, which was used to study the chronological and spatial rules of development of early cell edema in ischemia regions.
基金Supported by Research and Development Foundation for Major Science and Technology from Shenyang,No.19-112-4-105Big Data Foundation for Health Care from China Medical University,No.HMB201902105Natural Fund Guidance Plan from Liaoning,No.2019-ZD-0743.
文摘BACKGROUND It is evident that an accurate evaluation of T and N stage rectal cancer is essential for treatment planning.It has not been extensively investigated whether texture features derived from diffusion-weighted imaging(DWI)images and apparent diffusion coefficient(ADC)maps are associated with the extent of local invasion(pathological stage T1-2 vs T3-4)and nodal involvement(pathological stage N0 vs N1-2)in rectal cancer.AIM To predict different stages of rectal cancer using texture analysis based on DWI images and ADC maps.METHODS One hundred and fifteen patients with pathologically proven rectal cancer,who underwent preoperative magnetic resonance imaging,including DWI,were enrolled,retrospectively.The ADC measurements(ADCmean,ADCmin,ADCmax)as well as texture features,including the gray level co-occurrence matrix parameters,the gray level run-length matrix parameters and wavelet parameters were calculated based on DWI(b=0 and b=1000)images and the ADC maps.Independent sample t-tests or Mann-Whitney U tests were used for statistical analysis.Multivariate logistic regression analysis was conducted to establish the models.The predictive performance was validated by receiver operating characteristic curve analysis.RESULTS Dissimilarity,sum average,information correlation and run-length nonuniformity from DWIb=0 images,gray level nonuniformity,run percentage and run-length nonuniformity from DWIb=1000 images,and dissimilarity and run percentage from ADC maps were found to be independent predictors of local invasion(stage T3-4).The area under the operating characteristic curve of the model reached 0.793 with a sensitivity of 78.57%and a specificity of 74.19%.Sum average,gray level nonuniformity and the horizontal components of symlet transform(SymletH)from DWIb=0 images,sum average,information correlation,long run low gray level emphasis and SymletH from DWIb=1000 images,and ADCmax,ADCmean and information correlation from ADC maps were identified as independent predictors of nodal involvement.The area under the operating characteristic curve of the model reached 0.802 with a sensitivity of 80.77%and a specificity of 68.25%.CONCLUSION Texture features extracted from DWI images and ADC maps are useful clues for predicting pathological T and N stages in rectal cancer.
基金Supported by:the Key Program of Shenzhen Health Bureau,No.200605
文摘BACKGROUND: Because magnetic resonance diffusion-weighted imaging is sensitive to water molecule movement, it has particular advantages for early diagnosis of cerebral infarction. However, the relationship between apparent diffusion coefficient changes with ischemia time, particularly relative apparent diffusion coefficient and tissue pathological changes remains controversial. OBJECTIVE: To explore the correlation between apparent diffusion coefficient changes and pathologic changes in hyperacute cerebral infarction. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment of neuroimaging. The study was performed at the Laboratory of Radiology Department, Longgang Central Hospital of Shenzhen from October 2007 to October 2008. MATERIALS: Magnetic resonance scanner was purchased from Philips Medical Systems, Best, the Netherlands. METHODS: A total of 42 healthy, adult, New Zealand rabbits were randomly assigned into sham-operation, ischemia 0.5-, 1-, 2-, 3-, 4-, and 6-hour groups, with six animals in each group. Local cerebral ischemia model was established by right middle cerebral artery occlusion, and cranial MRI scanning and pathologic observation were performed, respectively, at 0.5, 1,2, 3, 4, and 6 hours following ischemia. The middle cerebral artery of sham-operation group was only exposed, but not occluded. Images at the above-mentioned time points were also collected. MAIN OUTCOME MEASURES: Apparent diffusion coefficient and relative apparent diffusion coefficient values of abnormal signal on diffusion-weighted imaging were calculated and compared with pathological changes in the ischemic region. RESULTS: No abnormal diffusion-weighted imaging signals or pathological changes were observed in the sham-operation group. Abnormal signal intensity on diffusion-weighted imaging was first observed in the 0.5-hour group. Apparent diffusion coefficient and relative apparent diffusion coefficient values decreased in all middle cerebral artery occlusion rabbits and reached lowest levels at 3 hours, followed by a gradual increase. The right ischemic basal ganglia region with high signal intensity on diffusion-weighted imaging extended with increasing time of occlusion, and the pathologic outcome corresponded with MRI changes. CONCLUSION: Relative apparent diffusion coefficient values changed regularly with ischemia time and displayed good correspondence to pathological manifestations.
基金the Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital,NO.CY2021-QNB09the Science and Technology Project of Gansu Province,NO.21JR11RA122+1 种基金Department of Education of Gansu Province:Innovation Fund Project,NO.2022B-056Gansu Province Clinical Research Center for Functional and Molecular Imaging,NO.21JR7RA438.
文摘BACKGROUND Diffusion-weighted imaging(DWI)has been developed to stage liver fibrosis.However,its diagnostic performance is inconsistent among studies.Therefore,it is worth studying the diagnostic value of various diffusion models for liver fibrosis in one cohort.AIM To evaluate the clinical potential of six diffusion-weighted models in liver fibrosis staging and compare their diagnostic performances.METHODS This prospective study enrolled 59 patients suspected of liver disease and scheduled for liver biopsy and 17 healthy participants.All participants underwent multi-b value DWI.The main DWI-derived parameters included Mono-apparent diffusion coefficient(ADC)from mono-exponential DWI,intravoxel incoherent motion model-derived true diffusion coefficient(IVIM-D),diffusion kurtosis imaging-derived apparent diffusivity(DKI-MD),stretched exponential model-derived distributed diffusion coefficient(SEM-DDC),fractional order calculus(FROC)model-derived diffusion coefficient(FROC-D)and FROC model-derived microstructural quantity(FROC-μ),and continuous-time random-walk(CTRW)model-derived anomalous diffusion coefficient(CTRW-D)and CTRW model-derived temporal diffusion heterogeneity index(CTRW-α).The correlations between DWI-derived parameters and fibrosis stages and the parameters’diagnostic efficacy in detecting significant fibrosis(SF)were assessed and compared.RESULTS CTRW-D(r=-0.356),CTRW-α(r=-0.297),DKI-MD(r=-0.297),FROC-D(r=-0.350),FROC-μ(r=-0.321),IVIM-D(r=-0.251),Mono-ADC(r=-0.362),and SEM-DDC(r=-0.263)were significantly correlated with fibrosis stages.The areas under the ROC curves(AUCs)of the combined index of the six models for distinguishing SF(0.697-0.747)were higher than each of the parameters alone(0.524-0.719).The DWI models’ability to detect SF was similar.The combined index of CTRW model parameters had the highest AUC(0.747).CONCLUSION The DWI models were similarly valuable in distinguishing SF in patients with liver disease.The combined index of CTRW parameters had the highest AUC.
基金Egyptian Ministry for Scientific Research,Science,Technology&Innovation Funding Authority(STDF),No.HCV-3506.
文摘BACKGROUND Chronic hepatitis C(CHC)is a health burden with consequent morbidity and mortality.Liver biopsy is the gold standard for evaluating fibrosis and assessing disease severity and prognostic purposes post-treatment.Noninvasive altern-atives for liver biopsy such as transient elastography(TE)and diffusion-weighted magnetic resonance imaging(DW-MRI)are critical needs.AIM To evaluate TE and DW-MRI as noninvasive tools for predicting liver fibrosis in children with CHC.METHODS This prospective cross-sectional study initially recruited 100 children with CHC virus infection.Sixty-four children completed the full set of investigations including liver stiffness measurement(LSM)using TE and measurement of apparent diffusion coefficient(ADC)of the liver and spleen using DW-MRI.Liver biopsies were evaluated for fibrosis using Ishak scoring system.LSM and liver and spleen ADC were compared in different fibrosis stages and correlation analysis was performed with histopathological findings and other laboratory parameters.RESULTS Most patients had moderate fibrosis(73.5%)while 26.5%had mild fibrosis.None had severe fibrosis or cirrhosis.The majority(68.8%)had mild activity,while only 7.8%had moderate activity.Ishak scores had a significant direct correlation with LSM(P=0.008)and were negatively correlated with both liver and spleen ADC but with no statistical significance(P=0.086 and P=0.145,respectively).Similarly,histopatho-logical activity correlated significantly with LSM(P=0.002)but not with liver or spleen ADC(P=0.84 and 0.98 respectively).LSM and liver ADC were able to significantly discriminate F3 from lower fibrosis stages(area under the curve=0.700 and 0.747,respectively)with a better performance of liver ADC.CONCLUSION TE and liver ADC were helpful in predicting significant fibrosis in children with chronic hepatitis C virus infection with a better performance of liver ADC.
基金Supported by Beijing Hospitals Authority Youth Program,No.QML20231103Beijing Hospitals Authority Ascent Plan,No.DFL20191103National Key R&D Program of China,No.2023YFC3402805.
文摘BACKGROUND About 10%-31% of colorectal liver metastases(CRLM)patients would concomitantly show hepatic lymph node metastases(LNM),which was considered as sign of poor biological behavior and a relative contraindication for liver resection.Up to now,there’s still lack of reliable preoperative methods to assess the status of hepatic lymph nodes in patients with CRLM,except for pathology examination of lymph node after resection.AIM To compare the ability of mono-exponential,bi-exponential,and stretchedexponential diffusion-weighted imaging(DWI)models in distinguishing between benign and malignant hepatic lymph nodes in patients with CRLM who received neoadjuvant chemotherapy prior to surgery.METHODS In this retrospective study,97 CRLM patients with pathologically confirmed hepatic lymph node status underwent magnetic resonance imaging,including DWI with ten b values before and after chemotherapy.Various parameters,such as the apparent diffusion coefficient from the mono-exponential model,and the true diffusion coefficient,the pseudo-diffusion coefficient,and the perfusion fraction derived from the intravoxel incoherent motion model,along with distributed diffusion coefficient(DDC)andαfrom the stretched-exponential model(SEM),were measured.The parameters before and after chemotherapy were compared between positive and negative hepatic lymph node groups.A nomogram was constructed to predict the hepatic lymph node status.The reliability and agreement of the measurements were assessed using the coefficient of variation and intraclass correlation coefficient.RESULTS Multivariate analysis revealed that the pre-treatment DDC value and the short diameter of the largest lymph node after treatment were independent predictors of metastatic hepatic lymph nodes.A nomogram combining these two factors demonstrated excellent performance in distinguishing between benign and malignant lymph nodes in CRLM patients,with an area under the curve of 0.873.Furthermore,parameters from SEM showed substantial repeatability.CONCLUSION The developed nomogram,incorporating the pre-treatment DDC and the short axis of the largest lymph node,can be used to predict the presence of hepatic LNM in CRLM patients undergoing chemotherapy before surgery.This nomogram was proven to be more valuable,exhibiting superior diagnostic performance compared to quantitative parameters derived from multiple b values of DWI.The nomogram can serve as a preoperative assessment tool for determining the status of hepatic lymph nodes and aiding in the decision-making process for surgical treatment in CRLM patients.
基金partially supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(JP22H03643)Japan Science and Technology Agency(JST)Support for Pioneering Research Initiated by the Next Generation(SPRING)(JPMJSP2145)JST through the Establishment of University Fellowships towards the Creation of Science Technology Innovation(JPMJFS2115)。
文摘Dear Editor,This letter proposes to integrate dendritic learnable network architecture with Vision Transformer to improve the accuracy of image recognition.In this study,based on the theory of dendritic neurons in neuroscience,we design a network that is more practical for engineering to classify visual features.Based on this,we propose a dendritic learning-incorporated vision Transformer(DVT),which out-performs other state-of-the-art methods on three image recognition benchmarks.
文摘A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations.
基金supported by the National Natural Science Foundation of China(Grant Nos.42322408,42188101,41974211,and 42074202)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDJ-SSW-JSC028)+1 种基金the Strategic Priority Program on Space Science,Chinese Academy of Sciences(Grant Nos.XDA15052500,XDA15350201,and XDA15014800)supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.Y202045)。
文摘Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images.
基金funding and support from the United Kingdom Space Agency(UKSA)the European Space Agency(ESA)+5 种基金funded and supported through the ESA PRODEX schemefunded through PRODEX PEA 4000123238the Research Council of Norway grant 223252funded by Spanish MCIN/AEI/10.13039/501100011033 grant PID2019-107061GB-C61funding and support from the Chinese Academy of Sciences(CAS)funding and support from the National Aeronautics and Space Administration(NASA)。
文摘The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.
基金supported by the Research Council of Norway under contracts 223252/F50 and 300844/F50the Trond Mohn Foundation。
文摘Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but also to dayglow emissions produced by photoelectrons induced by sunlight.Nightglow emissions and scattered sunlight can contribute to the background signal.To fully utilize such images in space science,background contamination must be removed to isolate the auroral signal.Here we outline a data-driven approach to modeling the background intensity in multiple images by formulating linear inverse problems based on B-splines and spherical harmonics.The approach is robust,flexible,and iteratively deselects outliers,such as auroral emissions.The final model is smooth across the terminator and accounts for slow temporal variations and large-scale asymmetries in the dayglow.We demonstrate the model by using the three far ultraviolet cameras on the Imager for Magnetopause-to-Aurora Global Exploration(IMAGE)mission.The method can be applied to historical missions and is relevant for upcoming missions,such as the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.
基金supported by the National Key R&D Program of China(Grant Nos.2021YFB3901403 and 2023YFC3007203).
文摘The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and characteristics of discontinuities.It ignores the influence of mineral composition and shows a deficiency in assessing the integrity coefficient.In this context,hyperspectral imaging and digital panoramic borehole camera technologies are applied to analyze the mineral content and integrity of rock mass.Based on the carbonate mineral content and fissure area ratio,the strength reduction factor and integrity coefficient are calculated to improve the GSI evaluation method.According to the results of mineral classification and fissure identification,the strength reduction factor and integrity coefficient increase with the depth of rock mass.The rock mass GSI calculated by the improved method is mainly concentrated between 40 and 60,which is close to the calculation results of the traditional method.The GSI error rates obtained by the two methods are mostly less than 10%,indicating the rationality of the hyperspectral-digital borehole image coupled evaluation method.Moreover,the sensitivity of the fissure area ratio(Sr)to GSI is greater than that of the strength reduction factor(a),which means the proposed GSI is suitable for rocks with significant fissure development.The improved method reduces the influence of subjective factors and provides a reliable index for the deterioration evaluation of rock mass.
基金supported by the National Natural Science Foundation of China(62375144 and 61875092)Tianjin Foundation of Natural Science(21JCYBJC00260)Beijing-Tianjin-Hebei Basic Research Cooperation Special Program(19JCZDJC65300).
文摘Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts and restore texture completely in OCT images.We proposed a deep learning-based inpainting method of saturation artifacts in this paper.The generation mechanism of saturation artifacts was analyzed,and experimental and simulated datasets were built based on the mechanism.Enhanced super-resolution generative adversarial networks were trained by the clear–saturated phantom image pairs.The perfect reconstructed results of experimental zebrafish and thyroid OCT images proved its feasibility,strong generalization,and robustness.
文摘Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the soft X-ray Imager,an initial characterisation of the devices has been carried out to give a baseline performance level.Three CCDs have been characterised,the two flight devices and the flight spa re.This has been carried out at the Open University in a bespo ke cleanroom measure ment facility.The results show that there is a cluster of bright pixels in the flight spa re which increases in size with tempe rature.However at the nominal ope rating tempe rature(-120℃) it is within the procure ment specifications.Overall,the devices meet the specifications when ope rating at -120℃ in 6 × 6 binned frame transfer science mode.The se rial charge transfer inefficiency degrades with temperature in full frame mode.However any charge losses are recovered when binning/frame transfer is implemented.
文摘Introduction: Ultrafast latest developments in artificial intelligence (ΑΙ) have recently multiplied concerns regarding the future of robotic autonomy in surgery. However, the literature on the topic is still scarce. Aim: To test a novel AI commercially available tool for image analysis on a series of laparoscopic scenes. Methods: The research tools included OPENAI CHATGPT 4.0 with its corresponding image recognition plugin which was fed with a list of 100 laparoscopic selected snapshots from common surgical procedures. In order to score reliability of received responses from image-recognition bot, two corresponding scales were developed ranging from 0 - 5. The set of images was divided into two groups: unlabeled (Group A) and labeled (Group B), and according to the type of surgical procedure or image resolution. Results: AI was able to recognize correctly the context of surgical-related images in 97% of its reports. For the labeled surgical pictures, the image-processing bot scored 3.95/5 (79%), whilst for the unlabeled, it scored 2.905/5 (58.1%). Phases of the procedure were commented in detail, after all successful interpretations. With rates 4 - 5/5, the chatbot was able to talk in detail about the indications, contraindications, stages, instrumentation, complications and outcome rates of the operation discussed. Conclusion: Interaction between surgeon and chatbot appears to be an interesting frontend for further research by clinicians in parallel with evolution of its complex underlying infrastructure. In this early phase of using artificial intelligence for image recognition in surgery, no safe conclusions can be drawn by small cohorts with commercially available software. Further development of medically-oriented AI software and clinical world awareness are expected to bring fruitful information on the topic in the years to come.
基金This research was funded by the Natural Science Foundation of Hebei Province(F2021506004).
文摘Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned aerial vehicle(UAV)imagery.Addressing these limitations,we propose a hybrid transformer-based detector,H-DETR,and enhance it for dense small objects,leading to an accurate and efficient model.Firstly,we introduce a hybrid transformer encoder,which integrates a convolutional neural network-based cross-scale fusion module with the original encoder to handle multi-scale feature sequences more efficiently.Furthermore,we propose two novel strategies to enhance detection performance without incurring additional inference computation.Query filter is designed to cope with the dense clustering inherent in drone-captured images by counteracting similar queries with a training-aware non-maximum suppression.Adversarial denoising learning is a novel enhancement method inspired by adversarial learning,which improves the detection of numerous small targets by counteracting the effects of artificial spatial and semantic noise.Extensive experiments on the VisDrone and UAVDT datasets substantiate the effectiveness of our approach,achieving a significant improvement in accuracy with a reduction in computational complexity.Our method achieves 31.9%and 21.1%AP on the VisDrone and UAVDT datasets,respectively,and has a faster inference speed,making it a competitive model in UAV image object detection.
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0107000)the General Projects of the National Natural Science Foundation of China(Grant No.52171259)the High-Tech Ship Research Project of the Ministry of Industry and Information Technology(Grant No.[2021]342)。
文摘Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second.
基金the China Postdoctoral Science Foundation under Grant 2021M701838the Natural Science Foundation of Hainan Province of China under Grants 621MS042 and 622MS067the Hainan Medical University Teaching Achievement Award Cultivation under Grant HYjcpx202209.
文摘Watermarks can provide reliable and secure copyright protection for optical coherence tomography(OCT)fundus images.The effective image segmentation is helpful for promoting OCT image watermarking.However,OCT images have a large amount of low-quality data,which seriously affects the performance of segmentationmethods.Therefore,this paper proposes an effective segmentation method for OCT fundus image watermarking using a rough convolutional neural network(RCNN).First,the rough-set-based feature discretization module is designed to preprocess the input data.Second,a dual attention mechanism for feature channels and spatial regions in the CNN is added to enable the model to adaptively select important information for fusion.Finally,the refinement module for enhancing the extraction power of multi-scale information is added to improve the edge accuracy in segmentation.RCNN is compared with CE-Net and MultiResUNet on 83 gold standard 3D retinal OCT data samples.The average dice similarly coefficient(DSC)obtained by RCNN is 6%higher than that of CE-Net.The average 95 percent Hausdorff distance(95HD)and average symmetric surface distance(ASD)obtained by RCNN are 32.4%and 33.3%lower than those of MultiResUNet,respectively.We also evaluate the effect of feature discretization,as well as analyze the initial learning rate of RCNN and conduct ablation experiments with the four different models.The experimental results indicate that our method can improve the segmentation accuracy of OCT fundus images,providing strong support for its application in medical image watermarking.
基金the TCL Science and Technology Innovation Fundthe Youth Science and Technology Talent Promotion Project of Jiangsu Association for Science and Technology,Grant/Award Number:JSTJ‐2023‐017+4 种基金Shenzhen Municipal Science and Technology Innovation Council,Grant/Award Number:JSGG20220831105002004National Natural Science Foundation of China,Grant/Award Number:62201468Postdoctoral Research Foundation of China,Grant/Award Number:2022M722599the Fundamental Research Funds for the Central Universities,Grant/Award Number:D5000210966the Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2021A1515110079。
文摘Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet.