A structure relaxation model based on the empirical electron theory of solids and molecules is developed to compute the diffusion active energies of C, N in γFe. First, adding a restriction, the lattice maintains rig...A structure relaxation model based on the empirical electron theory of solids and molecules is developed to compute the diffusion active energies of C, N in γFe. First, adding a restriction, the lattice maintains rigidity when solute atom migrates to the saddle point. In this step, the hybridization classes of every atom do not change. Then, the restriction is loosed and the atoms are relaxed under the coulomb repulsive forces. It is supposed that the energy needed in the first step would be compensated partly by the second step. In this way, the diffusion active energies of C, N in γFe are computed. Compared with the experiment data, the relative errors are less than 5%, which are good results in the computation of activation energy of diffusion.展开更多
The diffusion coefficients of several alloying elements(Al,Mo,Co,Ta,Ru,W,Cr,Re) in Ni are directly calculated using the five-frequency model and the first principles density functional theory.The correlation factors...The diffusion coefficients of several alloying elements(Al,Mo,Co,Ta,Ru,W,Cr,Re) in Ni are directly calculated using the five-frequency model and the first principles density functional theory.The correlation factors provided by the five-frequency model are explicitly calculated.The calculated diffusion coefficients show their excellent agreement with the available experimental data.Both the diffusion pre-factor(D 0) and the activation energy(Q) of impurity diffusion are obtained.The diffusion coefficients above 700 K are sorted in the following order:DAl〉DCr〉DCo〉DTa〉DMo〉DRu〉DW〉D Re.It is found that there is a positive correlation between the atomic radius of the solute and the jump energy of Ni that results in the rotation of the solute-vacancy pair(E 1).The value of E 2-E 1(E 2 is the solute diffusion energy) and the correlation factor each also show a positive correlation.The larger atoms in the same series have lower diffusion activation energies and faster diffusion coefficients.展开更多
Microwave boriding layer microstructure of carbon steels and its diffusion mechanics were studied. The results show that the existence of microwave field in the boriding can't change the growth mechanics of boriding ...Microwave boriding layer microstructure of carbon steels and its diffusion mechanics were studied. The results show that the existence of microwave field in the boriding can't change the growth mechanics of boriding layer. Compared with conventional boriding, if the treatment temperature and time remain constantly, the descend rate of the boriding layer thickness with the increase of carbon content of steel is smaller. The diffusion activation energy ofT8 steel is 2.6× 10^5 J/mol between the temperature of 750 ℃ and 900 ℃ in microwave field, which is in the same order of conventional boriding.展开更多
The volume fraction of the lamellar carbide cell in HK50 alloy may be increased with the in- crease of nitrogen content over 0.065%.The habit plane of l(?)mellar carbide is {111}_γ.The distribution of nitrogen change...The volume fraction of the lamellar carbide cell in HK50 alloy may be increased with the in- crease of nitrogen content over 0.065%.The habit plane of l(?)mellar carbide is {111}_γ.The distribution of nitrogen changes no more before or after the precipitation of lamellar structure. The diffusion activation energy of carbon reduces remarkably with the increase of nitrogen content.It is believed that the lamellar carbide cell is harmful to the high temperature creep and impact properties of the alloy.展开更多
The electrochemical behavior of CoCl2 in 1-butyl-3-methylimidazolium hexafluorophosphate (bmim]PF6) was investigated by cyclic voltammetry. The cyclic voltammograms were obtained from electrochemical measurement under...The electrochemical behavior of CoCl2 in 1-butyl-3-methylimidazolium hexafluorophosphate (bmim]PF6) was investigated by cyclic voltammetry. The cyclic voltammograms were obtained from electrochemical measurement under different temperatures, and the reversible behavior for Co2+/Co3+ redox couple on glassy carbon electrode in bmim]PF6 was confirmed by the characteristic of the peak currents. The diffusion coefficients (about 10-11 m2/s) of Co2+ in bmim]PF6 under different temperatures were evaluated from the dependence of the peak current density on the potential scan rates in cyclic voltammograms. It is found that the diffusion coefficient increases with increasing temperature. Diffusion activation energy of Co2+ in bmim]PF6 is also calculated to be 23.4 kJ/mol according to the relationship between diffusion coefficient and temperature.展开更多
Adding rare earth into permeating agent has an obvious catalytic effect on vanadizing on steel surface, and the vanadizing rate can increase about 30%~40%. The case depth ( x ) of the samples which have undergone d...Adding rare earth into permeating agent has an obvious catalytic effect on vanadizing on steel surface, and the vanadizing rate can increase about 30%~40%. The case depth ( x ) of the samples which have undergone different periods of vanadizing time at 950 ℃ was measured. These depth values ( x ) and its corresponded time ( t ) were substituded into the experimental formula, i.e., x n=Kt (ln x=(1/n) ln K+(1/n) ln t ), and were processed by mono linear regression. It is found that x and t have the relationship of x 2=Kt . Addition of rare earth can promote reaction of the permeating agent, and increase vanadium potential of the agent. Rare earth, as a strong reductant, makes the oxide on the steel surface reduced, and thus activates the steel surface. Permeating of rare earth into steel and the VC layer intensifies the crystal fault density, and, together with its excellent chemical activation, makes carbon atoms diffuse easily. These functions of rare earth can decrease the diffusion activation energy of the carbon atoms, and therefore has catalytic effect on permeation.展开更多
This paper investigates the effect of rare earth elements on the kinetic process, microstructure and mechanical properties of vanadization in borax bath. The results show that addition of rare earth elements to vanadi...This paper investigates the effect of rare earth elements on the kinetic process, microstructure and mechanical properties of vanadization in borax bath. The results show that addition of rare earth elements to vanadizing agent has obvious catalytic effect on the rate of vanadization, which has been enchanced by 30%. The wear and corrosion resistance of vanadium carbide layer were prompted by the addition of rare earth to the agent. Through increasing vanadium potential of the agent, activating the surface of workpieces and decreasing the activation energy of diffusion of carbon, rare earth elements accelerate the rate of vanadization process.展开更多
Proeutectoid ferrite with carbon content xo precipitating from austenite in a multicomponent steel at temperature T is supposed to be equivalent to proeutectoid ferrite with the same carbon content precipitating from...Proeutectoid ferrite with carbon content xo precipitating from austenite in a multicomponent steel at temperature T is supposed to be equivalent to proeutectoid ferrite with the same carbon content precipitating from austenite in Fe-C binary system at temperature T'.is described as the temperature difference of proeutectiod ferrite formation, and can be calculated from the Fe-X diagrams and the equilibrium temperature A3. By introducing Tf and basing on the thermodynamic model for Fe-C binary alloy, the driving force for phase transformation from austenite to proeutectoid ferrite in multicomponent steels has been successfully calculated. Through the Johnson-Mehl equation and using the data hem known TTT diagrams, the relationship between the chemical composition and the intedecial edenly packeter as well as activation energy for proeutectoid ferrite formation can be calculated. The starting curves of proeutectoid ferritic transformation calculated in this way in some hypo-proeutectoid structural steels agree well with the erperimental data.展开更多
Isothermal sintering experiments were performed on the 316 L stainless steel fiber felts with fiber diameters of 8 μm and20 μm. Surface morphologies of the sintered specimens were investigated by using scanning elec...Isothermal sintering experiments were performed on the 316 L stainless steel fiber felts with fiber diameters of 8 μm and20 μm. Surface morphologies of the sintered specimens were investigated by using scanning electron microscopy(SEM) and optical microscopy. The results show that the amount of the sintering necks and the relative densities of the fiber felt increase with the increasing of both the sintering temperature and the sintering time. And the activation energies estimated present a decline at high relative densities for both 8 μm and 20 μm fiber felts. Moreover, the sintering densification of the fiber felts is dominated by volume diffusion mechanism at low temperature and relative densities. As more grain boundaries are formed at higher temperature and relative density, grain boundary diffusion will also contribute to the densification of the specimen.展开更多
The antimony segregation at grain boundary was observed and the temper embrittlement in titanium-doped nickel-chromium steel was analyzed. It is concluded that the antimony segregation at grain boundary is nonequilibi...The antimony segregation at grain boundary was observed and the temper embrittlement in titanium-doped nickel-chromium steel was analyzed. It is concluded that the antimony segregation at grain boundary is nonequilibium and the kinetics of temper embrittlement agrees well with those of nonequilibrium antimony segregation at grain boundary. Besides, the mechanism of nonequilibrium antimony segregation at grain boundary proved to be the most satisfactory one among the existing mechanisms to interpret the antimony induced embrittlement kinetics in the nick- el-chromiunl steel. Based on these, the activation energy and frequency factor of diffusion of antimony vacancy complexes were obtained according to the concept of critical time in nonequilibrium grain boundary segregation theory.展开更多
文摘A structure relaxation model based on the empirical electron theory of solids and molecules is developed to compute the diffusion active energies of C, N in γFe. First, adding a restriction, the lattice maintains rigidity when solute atom migrates to the saddle point. In this step, the hybridization classes of every atom do not change. Then, the restriction is loosed and the atoms are relaxed under the coulomb repulsive forces. It is supposed that the energy needed in the first step would be compensated partly by the second step. In this way, the diffusion active energies of C, N in γFe are computed. Compared with the experiment data, the relative errors are less than 5%, which are good results in the computation of activation energy of diffusion.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50971005)
文摘The diffusion coefficients of several alloying elements(Al,Mo,Co,Ta,Ru,W,Cr,Re) in Ni are directly calculated using the five-frequency model and the first principles density functional theory.The correlation factors provided by the five-frequency model are explicitly calculated.The calculated diffusion coefficients show their excellent agreement with the available experimental data.Both the diffusion pre-factor(D 0) and the activation energy(Q) of impurity diffusion are obtained.The diffusion coefficients above 700 K are sorted in the following order:DAl〉DCr〉DCo〉DTa〉DMo〉DRu〉DW〉D Re.It is found that there is a positive correlation between the atomic radius of the solute and the jump energy of Ni that results in the rotation of the solute-vacancy pair(E 1).The value of E 2-E 1(E 2 is the solute diffusion energy) and the correlation factor each also show a positive correlation.The larger atoms in the same series have lower diffusion activation energies and faster diffusion coefficients.
基金the National Natural Science Foundation of China(No.50371064)Natural Science Foundation of Hubei(No.2003ABA032)
文摘Microwave boriding layer microstructure of carbon steels and its diffusion mechanics were studied. The results show that the existence of microwave field in the boriding can't change the growth mechanics of boriding layer. Compared with conventional boriding, if the treatment temperature and time remain constantly, the descend rate of the boriding layer thickness with the increase of carbon content of steel is smaller. The diffusion activation energy ofT8 steel is 2.6× 10^5 J/mol between the temperature of 750 ℃ and 900 ℃ in microwave field, which is in the same order of conventional boriding.
文摘The volume fraction of the lamellar carbide cell in HK50 alloy may be increased with the in- crease of nitrogen content over 0.065%.The habit plane of l(?)mellar carbide is {111}_γ.The distribution of nitrogen changes no more before or after the precipitation of lamellar structure. The diffusion activation energy of carbon reduces remarkably with the increase of nitrogen content.It is believed that the lamellar carbide cell is harmful to the high temperature creep and impact properties of the alloy.
基金Project(2005-383) supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education, China
文摘The electrochemical behavior of CoCl2 in 1-butyl-3-methylimidazolium hexafluorophosphate (bmim]PF6) was investigated by cyclic voltammetry. The cyclic voltammograms were obtained from electrochemical measurement under different temperatures, and the reversible behavior for Co2+/Co3+ redox couple on glassy carbon electrode in bmim]PF6 was confirmed by the characteristic of the peak currents. The diffusion coefficients (about 10-11 m2/s) of Co2+ in bmim]PF6 under different temperatures were evaluated from the dependence of the peak current density on the potential scan rates in cyclic voltammograms. It is found that the diffusion coefficient increases with increasing temperature. Diffusion activation energy of Co2+ in bmim]PF6 is also calculated to be 23.4 kJ/mol according to the relationship between diffusion coefficient and temperature.
文摘Adding rare earth into permeating agent has an obvious catalytic effect on vanadizing on steel surface, and the vanadizing rate can increase about 30%~40%. The case depth ( x ) of the samples which have undergone different periods of vanadizing time at 950 ℃ was measured. These depth values ( x ) and its corresponded time ( t ) were substituded into the experimental formula, i.e., x n=Kt (ln x=(1/n) ln K+(1/n) ln t ), and were processed by mono linear regression. It is found that x and t have the relationship of x 2=Kt . Addition of rare earth can promote reaction of the permeating agent, and increase vanadium potential of the agent. Rare earth, as a strong reductant, makes the oxide on the steel surface reduced, and thus activates the steel surface. Permeating of rare earth into steel and the VC layer intensifies the crystal fault density, and, together with its excellent chemical activation, makes carbon atoms diffuse easily. These functions of rare earth can decrease the diffusion activation energy of the carbon atoms, and therefore has catalytic effect on permeation.
文摘This paper investigates the effect of rare earth elements on the kinetic process, microstructure and mechanical properties of vanadization in borax bath. The results show that addition of rare earth elements to vanadizing agent has obvious catalytic effect on the rate of vanadization, which has been enchanced by 30%. The wear and corrosion resistance of vanadium carbide layer were prompted by the addition of rare earth to the agent. Through increasing vanadium potential of the agent, activating the surface of workpieces and decreasing the activation energy of diffusion of carbon, rare earth elements accelerate the rate of vanadization process.
文摘Proeutectoid ferrite with carbon content xo precipitating from austenite in a multicomponent steel at temperature T is supposed to be equivalent to proeutectoid ferrite with the same carbon content precipitating from austenite in Fe-C binary system at temperature T'.is described as the temperature difference of proeutectiod ferrite formation, and can be calculated from the Fe-X diagrams and the equilibrium temperature A3. By introducing Tf and basing on the thermodynamic model for Fe-C binary alloy, the driving force for phase transformation from austenite to proeutectoid ferrite in multicomponent steels has been successfully calculated. Through the Johnson-Mehl equation and using the data hem known TTT diagrams, the relationship between the chemical composition and the intedecial edenly packeter as well as activation energy for proeutectoid ferrite formation can be calculated. The starting curves of proeutectoid ferritic transformation calculated in this way in some hypo-proeutectoid structural steels agree well with the erperimental data.
基金Project(51134003) supported by the National Natural Science Foundation of China
文摘Isothermal sintering experiments were performed on the 316 L stainless steel fiber felts with fiber diameters of 8 μm and20 μm. Surface morphologies of the sintered specimens were investigated by using scanning electron microscopy(SEM) and optical microscopy. The results show that the amount of the sintering necks and the relative densities of the fiber felt increase with the increasing of both the sintering temperature and the sintering time. And the activation energies estimated present a decline at high relative densities for both 8 μm and 20 μm fiber felts. Moreover, the sintering densification of the fiber felts is dominated by volume diffusion mechanism at low temperature and relative densities. As more grain boundaries are formed at higher temperature and relative density, grain boundary diffusion will also contribute to the densification of the specimen.
基金Item Sponsored by National Natural Science Foundation of China(51001011)
文摘The antimony segregation at grain boundary was observed and the temper embrittlement in titanium-doped nickel-chromium steel was analyzed. It is concluded that the antimony segregation at grain boundary is nonequilibium and the kinetics of temper embrittlement agrees well with those of nonequilibrium antimony segregation at grain boundary. Besides, the mechanism of nonequilibrium antimony segregation at grain boundary proved to be the most satisfactory one among the existing mechanisms to interpret the antimony induced embrittlement kinetics in the nick- el-chromiunl steel. Based on these, the activation energy and frequency factor of diffusion of antimony vacancy complexes were obtained according to the concept of critical time in nonequilibrium grain boundary segregation theory.