The developed technique of diffusive gradients in thin film( DGT) has been suggested as a promising tool for evaluation of cadmium( Cd) availability in soils,but there exists considerable debate on its suitability. In...The developed technique of diffusive gradients in thin film( DGT) has been suggested as a promising tool for evaluation of cadmium( Cd) availability in soils,but there exists considerable debate on its suitability. In this study,Cd bioavailability in soils was systemically investigated by comparing this technique with seven traditional methods, including soil solution concentration and six commonly used extraction methods( HAc,EDTA,Na c,NH4Ac,CaCl2 and MgCl2). Two typical plants( wheat and maize) were examined for Cd uptake. Maize was more sensitive to increasing exposure to Cd in soils than wheat when the added amounts of Cd ranged from 3. 5 to 5. 0 mg · kg-1,accompanied by the significant decreases of shoot and root biomasses. Cd concentrations in shoots and roots of two plants increased continuously with increasing levels of Cd in soils. Cd uptake was higher in wheat than that in maize. The bioavailable concentrations of Cd measured by all methods increased nearly linearly with increasing addition of Cd in soils. Positive correlations were observed between various bioavailable indicators of Cd in soils and Cd concentrations in two plants. The extractable Cd by six chemical extractants was considerably higher for maize than for wheat,while the DGT-measured and soil solution concentrations of Cd were lower for maize than for wheat,following the same trend as plant Cd uptake. The results imply that DGT measurement can effectively predict the bioavailable levels of Cd in soil solutions and that it is an ideal tool for prediction of Cd bioavailability in soils.展开更多
The technique of DGT (diffusive gradients in thin films) was applied to obtain high-resolution vertical profiles of dissolved reactive phosphorus (DRP) in sediment porewater of Lake Chaohu, a shallow eutrophication la...The technique of DGT (diffusive gradients in thin films) was applied to obtain high-resolution vertical profiles of dissolved reactive phosphorus (DRP) in sediment porewater of Lake Chaohu, a shallow eutrophication lake. Three kinds of DGT probes (with three thicknesses of diffusive gel: 0.38 mm, 0.78 mm and 1.18 mm) measured vertical concentration and induced flux from solid to solution phase which had intricate variations with depth. The results indicated that higher concentrations and induced fluxes of DRP were achieved by using DGT probe with thicker diffusion layer (CDGT1.18 > CDGT0.78 > CDGT0.38) and relatively stable DRP concentration profiles using DGT probes with 0.78 mm diffusive gel were obtained in each sediment core. The DRP concentrations displayed a clear gradient from Core C1 to Core C3 in sediment porewaters due to different sources and exchange degrees of reactive phosphorus. Compared to the concentrations obtained by the centrifugation technique, the concentrations of DRP resulting from the DGT technique were higher because some dissolved reactive phosphorus compounds have always been neglected using conventional centrifugation method.展开更多
The passive sampling technique, diffusive gradients in thin films(DGT) has attracted increasing interests as an in-situ sampler for organic contaminants including per-and polyfluoroalkyl substances(PFAS). However, its...The passive sampling technique, diffusive gradients in thin films(DGT) has attracted increasing interests as an in-situ sampler for organic contaminants including per-and polyfluoroalkyl substances(PFAS). However, its effectiveness has been questioned because of the small effective sampling area(3.1 cm^(2)). In this study, we developed a DGT probe for rapid sampling of eight PFAS in waters and applied it to a water-sediment system. It has a much larger sampling area(27 cm^(2)) and as a result lower method quantification limits(0.15 –0.21 ng/L for one-day deployment and 0.02 – 0.03 ng/L for one-week deployment) and much higher(by > 10 factors) sampling rate(100 m L/day) compared to the standard DGT(piston configuration). The sampler could linearly accumulate PFAS from wastewater, was sensitive enough even for a 24 hr deployment with performance comparable to grab sampling(500m L). The DGT probe provided homogeneous sampling performance along the large exposure area. The use of the probe to investigate distributions of dissolved PFAS around the sediment-water interface was demonstrated. This work, for the first time, demonstrated that the DGT probe is a promising monitoring tool for trace levels of PFAS and a research tool for studying their distribution, migration, and fate in aquatic environments including the sediment-water interface.展开更多
梯度扩散薄膜技术(Dffusive grdients in thin-films,DGT)是一种新的原位被动采样技术,可以高分辨地测定水体、土壤和沉积物中重金属的生物有效态,近年来在水环境领域中得到了广泛应用。本文根据文献、资料分析,介绍了DGT装置、基本原理...梯度扩散薄膜技术(Dffusive grdients in thin-films,DGT)是一种新的原位被动采样技术,可以高分辨地测定水体、土壤和沉积物中重金属的生物有效态,近年来在水环境领域中得到了广泛应用。本文根据文献、资料分析,介绍了DGT装置、基本原理,扩散相和结合相的发展,展望了DGT技术的发展前景。重点综述DGT技术在评价沉积物环境中重金属生物有效性的研究进展,并认为DGT技术为研究沉积物重金属生物有效性提供了快速高效的方法,为水环境中沉积物-水界面重金属迁移转化研究提供了强有力的技术支撑。展开更多
基金National Natural Science Foundation of China(No.41001334)Fundamental Research Funds for the Central Universities,China(No.2009B00814)+1 种基金the Project of Knowledge Innovation for the 3rd period,the Chinese Academy of Sciences(No.KZCX2-YW-JS304)Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘The developed technique of diffusive gradients in thin film( DGT) has been suggested as a promising tool for evaluation of cadmium( Cd) availability in soils,but there exists considerable debate on its suitability. In this study,Cd bioavailability in soils was systemically investigated by comparing this technique with seven traditional methods, including soil solution concentration and six commonly used extraction methods( HAc,EDTA,Na c,NH4Ac,CaCl2 and MgCl2). Two typical plants( wheat and maize) were examined for Cd uptake. Maize was more sensitive to increasing exposure to Cd in soils than wheat when the added amounts of Cd ranged from 3. 5 to 5. 0 mg · kg-1,accompanied by the significant decreases of shoot and root biomasses. Cd concentrations in shoots and roots of two plants increased continuously with increasing levels of Cd in soils. Cd uptake was higher in wheat than that in maize. The bioavailable concentrations of Cd measured by all methods increased nearly linearly with increasing addition of Cd in soils. Positive correlations were observed between various bioavailable indicators of Cd in soils and Cd concentrations in two plants. The extractable Cd by six chemical extractants was considerably higher for maize than for wheat,while the DGT-measured and soil solution concentrations of Cd were lower for maize than for wheat,following the same trend as plant Cd uptake. The results imply that DGT measurement can effectively predict the bioavailable levels of Cd in soil solutions and that it is an ideal tool for prediction of Cd bioavailability in soils.
文摘The technique of DGT (diffusive gradients in thin films) was applied to obtain high-resolution vertical profiles of dissolved reactive phosphorus (DRP) in sediment porewater of Lake Chaohu, a shallow eutrophication lake. Three kinds of DGT probes (with three thicknesses of diffusive gel: 0.38 mm, 0.78 mm and 1.18 mm) measured vertical concentration and induced flux from solid to solution phase which had intricate variations with depth. The results indicated that higher concentrations and induced fluxes of DRP were achieved by using DGT probe with thicker diffusion layer (CDGT1.18 > CDGT0.78 > CDGT0.38) and relatively stable DRP concentration profiles using DGT probes with 0.78 mm diffusive gel were obtained in each sediment core. The DRP concentrations displayed a clear gradient from Core C1 to Core C3 in sediment porewaters due to different sources and exchange degrees of reactive phosphorus. Compared to the concentrations obtained by the centrifugation technique, the concentrations of DRP resulting from the DGT technique were higher because some dissolved reactive phosphorus compounds have always been neglected using conventional centrifugation method.
基金supported by the Key Deployment Project of Centre for Ocean Mega-Research of Science, Chinese Academy of Sciences (No. COMS2019J08)the Guangzhou Municipal Science and Technology Project (No. 201904010291)+1 种基金National Natural Science Foundation of China (No. 21806042)Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety (No. 2019B030301008)。
文摘The passive sampling technique, diffusive gradients in thin films(DGT) has attracted increasing interests as an in-situ sampler for organic contaminants including per-and polyfluoroalkyl substances(PFAS). However, its effectiveness has been questioned because of the small effective sampling area(3.1 cm^(2)). In this study, we developed a DGT probe for rapid sampling of eight PFAS in waters and applied it to a water-sediment system. It has a much larger sampling area(27 cm^(2)) and as a result lower method quantification limits(0.15 –0.21 ng/L for one-day deployment and 0.02 – 0.03 ng/L for one-week deployment) and much higher(by > 10 factors) sampling rate(100 m L/day) compared to the standard DGT(piston configuration). The sampler could linearly accumulate PFAS from wastewater, was sensitive enough even for a 24 hr deployment with performance comparable to grab sampling(500m L). The DGT probe provided homogeneous sampling performance along the large exposure area. The use of the probe to investigate distributions of dissolved PFAS around the sediment-water interface was demonstrated. This work, for the first time, demonstrated that the DGT probe is a promising monitoring tool for trace levels of PFAS and a research tool for studying their distribution, migration, and fate in aquatic environments including the sediment-water interface.
文摘梯度扩散薄膜技术(Dffusive grdients in thin-films,DGT)是一种新的原位被动采样技术,可以高分辨地测定水体、土壤和沉积物中重金属的生物有效态,近年来在水环境领域中得到了广泛应用。本文根据文献、资料分析,介绍了DGT装置、基本原理,扩散相和结合相的发展,展望了DGT技术的发展前景。重点综述DGT技术在评价沉积物环境中重金属生物有效性的研究进展,并认为DGT技术为研究沉积物重金属生物有效性提供了快速高效的方法,为水环境中沉积物-水界面重金属迁移转化研究提供了强有力的技术支撑。