期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Procyanidin A_1 and its digestive products alleviate acrylamide-induced IPEC-J2 cell damage through regulating Keap1/Nrf2 pathway
1
作者 Fangfang Yan Qun Lu +1 位作者 Chengming Wang Rui Liu 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1475-1484,共10页
Our previous study has revealed that procyanidin A_(1)(A_(1))and its simulated digestive product(D-A,)can alleviate acrylamide(ACR)-induced intestine cell damage.However,the underlying mechanism remains unknown.In thi... Our previous study has revealed that procyanidin A_(1)(A_(1))and its simulated digestive product(D-A,)can alleviate acrylamide(ACR)-induced intestine cell damage.However,the underlying mechanism remains unknown.In this study,we elucidated the molecular mechanism for and D-A_(1) to alleviate ACR-stimulated IPEC-J2 cell damage.ACR slightly activated nuclear factor erythroid 2-related factor 2(Nrf2)signaling and its target genes,but this activation could not reduce intestine cell damage.A_(1) and D-A_(1) could alleviate ACR-induced cell damage,but the effect was abrogated in cells transiently transfected with Nrf2 small interfering RNA(siRNA).Further investigation confirmed that A_(1) and D-A_(1) interacted with Ketch-like ECH-associated protein 1(Keapl),which boosted the stabilization of Nrf2,subsequently promoted the translocation of Nrf2 into the nucleus,and further increased the expression of antioxidant proteins,thereby inhibiting glutathione(GSH)consumption,maintaining redox balance and eventually alleviating ACR-induced cell damage.Importantly,there was no difference between A_(1) and D-A_(1) treated groups,indicating that A_(1) can tolerate gastrointestinal digestion and may be a potential compound to limit the toxicity of ACR. 展开更多
关键词 Procyanidin A_1 Digestive products Acrylamide Nuclear factor erythroid 2-related factor 2(Nrf2) Intestinal cell damage
下载PDF
Effect of the chlortetracycline addition method on methane production from the anaerobic digestion of swine wastewater 被引量:3
2
作者 Lu Huang Xin Wen +5 位作者 Yan Wang Yongde Zou Baohua Ma Xindi Liao Juanboo Liang Yinbao Wu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第10期2001-2006,共6页
Effects of antibiotic residues on methane production in anaerobic digestion are commonly studied using the following two antibiotic addition methods:(1) adding manure from animals that consume a diet containing ant... Effects of antibiotic residues on methane production in anaerobic digestion are commonly studied using the following two antibiotic addition methods:(1) adding manure from animals that consume a diet containing antibiotics, and(2) adding antibiotic-free animal manure spiked with antibiotics. This study used chlortetracycline(CTC) as a model antibiotic to examine the effects of the antibiotic addition method on methane production in anaerobic digestion under two different swine wastewater concentrations(0.55 and 0.22 mg CTC/g dry manure). The results showed that CTC degradation rate in which manure was directly added at 0.55 mg CTC/g(HSPIKE treatment) was lower than the control values and the rest of the treatment groups. Methane production from the HSPIKEtreatment was reduced(p 〈 0.05) by 12% during the whole experimental period and 15% during the first 7 days. The treatments had no significant effect on the pH and chemical oxygen demand value of the digesters, and the total nitrogen of the0.55 mg CTC/kg manure collected from mediated swine was significantly higher than the other values. Therefore, different methane production under different antibiotic addition methods might be explained by the microbial activity and the concentrations of antibiotic intermediate products and metabolites. Because the primary entry route of veterinary antibiotics into an anaerobic digester is by contaminated animal manure, the most appropriate method for studying antibiotic residue effects on methane production may be using manure from animals that are given a particular antibiotic, rather than adding the antibiotic directly to the anaerobic digester. 展开更多
关键词 Chlortetracycline Methane production Psychrophilic anaerobic digestion Addition methods
原文传递
A comparative study on the alternating mesophilic and thermophilic two-stage anaerobic digestion of food waste 被引量:6
3
作者 Jey-R Sabado Ventura Jehoon Lee Deokjin Jahng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第6期1274-1283,共10页
An alternating mesophilic and thermophilic two stage anaerobic digestion (AD) process was conducted. The temperature of the acidogenic (A) and methanogenic (M) reactors was controlled as follows: System 1 (S1... An alternating mesophilic and thermophilic two stage anaerobic digestion (AD) process was conducted. The temperature of the acidogenic (A) and methanogenic (M) reactors was controlled as follows: System 1 (S1) mesophilic A-mesophilic M; (S2) mesophilic A-thermophilic M; and (S3) thermophilic A-mesophilic M. Initially, the AD reactor was acclimatized and inoculated with digester sludge. Food waste was added with the soluble chemical oxygen demand (SCOD) concentrations of 41.4-47.0 g/L and volatile fatty acids of 2.0-3.2 g/L. Based on the results, the highest total chemical oxygen demand removal (86.6%) was recorded in S2 while S3 exhibited the highest SCOD removal (96.6%). Comparing S1 with S2, total solids removal increased by 0.5%;S3 on the other hand decreased by 0.1% as compared to S1. However, volatile solids (VS) removal in S1, S2, and S3 was 78.5%, 81.7%, and 79.2%, respectively. S2 also exhibited the highest CH4 content, yield, and production rate of 70.7%, 0.44 L CH4/g VSadded, and 1.23 L CH4/(L.day), respectively. Bacterial community structure revealed that the richness, diversity, evenness, and dominance of S2 were high except for the archaeal community. The terminal restriction fragments dendrogram also revealed that the microbial community of the acidogenic and methanogenic reactors in S2 was distinct. Therefore, S2 was the best among the systems for the operation of two-stage AD of food waste in terms of CH4 production, nutrient removal, and microbial community structure. 展开更多
关键词 community structure food waste methane production nutrient removal two-stage anaerobic digestion
原文传递
Optimization of microwave pretreatment of lignocellulosic waste for enhancing methane production: Hyacinth as an example 被引量:1
4
作者 Bai-Hang Zhao Jie Chen +3 位作者 Han-Qing Yu Zhen-Hu Hu Zheng-Bo Yue Jun Li 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2017年第6期161-169,共9页
The effect of microwave pretreatment on the anaerobic degradation of hyacinth was investigated using response surface methodology (RSM). The components oflignin and the other constituents of hyacinth were altered by... The effect of microwave pretreatment on the anaerobic degradation of hyacinth was investigated using response surface methodology (RSM). The components oflignin and the other constituents of hyacinth were altered by microwave pretreatment. Comparison of the near-infrared spectra of hyacinth pretreated by microwave irradiation and water-heating pretreatment revealed that no new compounds were generated during hyacinth pretreatment by microwave irradiation. Atomic force microscopy observations indicated that the physical structures of hyacinth were disrupted by microwave pretreatment. The yield of methane per gram of the microwave-irradiated substrate increased by 38.3% as compared to that of the substrate pretreated via water-heating. A maximum methane yield of 221 mL·g-sub^-1 was obtained under the optimum pretreatment conditions (substrate concentration (pSC) = 20.1 g·L^-1 and pretreatment time (PT) = 14.6 min) using RSM analysis. A maximum methane production rate of 0.76 mL·h^-1· g-sub^-1 was obtained by applying PSC = 9.5 g·L^-1 and PT= 11 min. Interactive item coefficient analysis showed that methane production was dependent on the PSC and PT, separately, whereas the interactive effect of the PSC and PT on methane production was not significant. The same trend was also observed for the methane production rate. 展开更多
关键词 Microwave pretreatment Response surface methodology Methane production Hyacinth Anaerobic digestion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部