In the evolving landscape of cardiac rehabilitation(CR),adopting digital technologies,including synchronous/real-time digital interventions and smart applications,has emerged as a transformative approach.These technol...In the evolving landscape of cardiac rehabilitation(CR),adopting digital technologies,including synchronous/real-time digital interventions and smart applications,has emerged as a transformative approach.These technologies offer realtime health data access,continuous vital sign monitoring,and personalized educational enhanced patient self-management and engagement.Despite their potential benefits,challenges and limitations exist,necessitating careful consideration.Synchronous/real-time digital CR involves remote,two-way audiovisual communication,addressing issues of accessibility and promoting home-based interventions.Smart applications extend beyond traditional healthcare,providing real-time health data and fostering patient empowerment.Wearable devices and mobile apps enable continuous monitoring,tracking of rehabilitation outcomes,and facilitate lifestyle modifications crucial for cardiac health maintenance.As digital CR progresses,ensuring patient access,equitable implementation,and addressing the digital divide becomes paramount.Artificial intelligence holds promise in the early detection of cardiac events and tailoring patient-specific CR programs.However,challenges such as digital literacy,data privacy,and security must be addressed to ensure inclusive implementation.Moreover,the shift toward digital CR raises concerns about cost,safety,and potential depersonalization of therapeutic relationships.A transformative shift towards technologically enabled CR necessitates further research,focusing not only on technological advancements but also on customization to meet diverse patient needs.Overcoming challenges related to cost,safety,data security,and potential depersonalization is crucial for the widespread adoption of digital CR.Future studies should explore integrating moral values into digital therapeutic relationships and ensure that digital CR is accessible,equitable,and seamlessly integrated into routine cardiac care.Theoretical frameworks that accommodate the dynamic quality of real-time monitoring and feedback feature of digital CR interventions should be considered to guide intervention development.展开更多
Microscopic seepage characteristics are critical for the evaluation of tight sandstone reservoirs.In this study,a digital core approach integrating microscopic seepage simulation and CT scanning was developed to chara...Microscopic seepage characteristics are critical for the evaluation of tight sandstone reservoirs.In this study,a digital core approach integrating microscopic seepage simulation and CT scanning was developed to characterize microscopic seepage and fracture effectiveness(the ratio of micro-fractures that contributes to fluid flow)of tight sandstones.Numerical simulations were carried out for characterizations of tight sandstones.The results show that the axial permeability of the investigated cylindrical tight sandstone from Junggar Basin in China is 0.460μm~2,while the radial permeability is 0.3723μm~2,and the axial and radial effective fracture ratios are 0.4387 and 0.4806,respectively,indicating that cracks are not fully developed and the connectivity between micro-cracks is poor.Directional permeability that is difficult to measure by laboratory experiments can be obtained readily using the proposed method in this paper.The results provide important information for improving the exploration and development of tight sandstone reservoirs.展开更多
We are in the midst of a significant transformation regarding the way we produce products and deliver services thanks to the digitization of manufacturing and new connected supply-chains and co-creation systems.This a...We are in the midst of a significant transformation regarding the way we produce products and deliver services thanks to the digitization of manufacturing and new connected supply-chains and co-creation systems.This article elaborates Digital Twins Approach to the current challenges of knowledge management when Industry 4.0 is emerging in industries and manufacturing.Industry 4.0 approach underlines the importance of Internet of Things and interactions between social and physical systems.Internet of Things(and also Internet of Services and Internet of Data)are new Internet infrastructure that marries advanced manufacturing techniques and service architectures with the I-o-T,I-o-S,and I-o-D to create manufacturing systems that are not only interconnected,but communicate,analyze,and use information to drive further intelligent action back in the physical world.This paper identifies four critical domains of synergy challenge:(1)man-to-man interaction;(2)man-to-machine interaction;(3)machine-to-man interaction;and finally(4)machine-to-machine interaction.Key conclusion is that new knowledge management challenges are closely linked to the challenges of synergic interactions between these four key interactions and accurate measurements of synergic interaction.展开更多
A direct digital design method (DDDM) of worm-gear drive is proposed. It is directly based on the simulation of manufacturing process and completely different from the conventional modeling method. The loaded tooth ...A direct digital design method (DDDM) of worm-gear drive is proposed. It is directly based on the simulation of manufacturing process and completely different from the conventional modeling method. The loaded tooth contact analysis (LTCA) method is analyzed, in which the advanced surface to surface searching technique is included. The influence of misalignment errors and contact deformations on contact zone and transmission error (TE) is discussed. Combined modification approach on worm tooth surface is presented. By means of DDDM and LTCA, it is very conven- ient to verify the effect of worm-gear drive's modification approach. The analysis results show that, the modification in profile direction reduces the sensitivity of worm-gear drive to misalignment errors and the modification in longitudinal direction decreases the TE. Thus the optimization design of worm-gear drive can be achieved prior to the actual manufacturing process.展开更多
This work evaluates the phenotypic response of the model grass (Brachypodium distacbyon (L.) P. Beauv.) to nitrogen and phosphorus nutrition using a combination of imaging techniques and destructive harvest of sho...This work evaluates the phenotypic response of the model grass (Brachypodium distacbyon (L.) P. Beauv.) to nitrogen and phosphorus nutrition using a combination of imaging techniques and destructive harvest of shoots and roots. Reference line Bd21-3 was grown in pots using 11 phosphorus and 11 nitrogen concentrations to establish a dose-response curve. Shoot biovolume and biomass, root length and biomass, and tissue phosphorus and nitrogen concentrations increased with nutrient concentration. Shoot biovolume, estimated by imaging, was highly correlated with dry weight (R2 〉 0.92) and both biovolume and growth rate responded strongly to nutrient availability. Higher nutrient supply increased nodal root length more than other root types. Photochemical efficiency was strongly reduced by low phosphorus concentrations as early as 1 week after germination, suggesting that this measurement may be suitable for high throughput screening of phosphorus response. In contrast, nitrogen concentration had little effect on photochemical efficiency. Changes in biovolume over time were used to compare growth rates of four accessions in response tonitrogen and phosphorus supply. We demonstrate that a time series image-based approach coupled with mathematical modeling provides higher resolution of genotypic response to nutrient supply than traditional destructive techniques and shows promise for high throughput screening and determina- tion of genomic regions associated with superior nutrient use efficiency.展开更多
Several approaches for fast generation of digital holograms of a three-dimensional (3D) object have been discussed. Among them, the novel look-up table (N-LUT) method is analyzed to dramatically reduce the number ...Several approaches for fast generation of digital holograms of a three-dimensional (3D) object have been discussed. Among them, the novel look-up table (N-LUT) method is analyzed to dramatically reduce the number of pre-calculated fringe patterns required for computation of digital holograms of a 3D object by employing a new concept of principal fringe patterns, so that problems of computational complexity and huge memory size of the conventional ray-tracing and look-up table methods have been considerably alleviated. Meanwhile, as the 3D video images have a lot of temporally or spatially redundant data in their inter- and intra-frames, computation time of the 3D video holograms could be also reduced just by removing these redundant data. Thus, a couple of computational methods for generation of 3D video holograms by combined use of the N-LUT method and data compression algorithms are also presented and discussed. Some experimental results finally reveal that by using this approach a great reduction of computation time of 3D video holograms could be achieved.展开更多
基金Supported by The Ministry of Health,Czech RepublicConceptual Development of Research Organization,FNBr,No.65269705。
文摘In the evolving landscape of cardiac rehabilitation(CR),adopting digital technologies,including synchronous/real-time digital interventions and smart applications,has emerged as a transformative approach.These technologies offer realtime health data access,continuous vital sign monitoring,and personalized educational enhanced patient self-management and engagement.Despite their potential benefits,challenges and limitations exist,necessitating careful consideration.Synchronous/real-time digital CR involves remote,two-way audiovisual communication,addressing issues of accessibility and promoting home-based interventions.Smart applications extend beyond traditional healthcare,providing real-time health data and fostering patient empowerment.Wearable devices and mobile apps enable continuous monitoring,tracking of rehabilitation outcomes,and facilitate lifestyle modifications crucial for cardiac health maintenance.As digital CR progresses,ensuring patient access,equitable implementation,and addressing the digital divide becomes paramount.Artificial intelligence holds promise in the early detection of cardiac events and tailoring patient-specific CR programs.However,challenges such as digital literacy,data privacy,and security must be addressed to ensure inclusive implementation.Moreover,the shift toward digital CR raises concerns about cost,safety,and potential depersonalization of therapeutic relationships.A transformative shift towards technologically enabled CR necessitates further research,focusing not only on technological advancements but also on customization to meet diverse patient needs.Overcoming challenges related to cost,safety,data security,and potential depersonalization is crucial for the widespread adoption of digital CR.Future studies should explore integrating moral values into digital therapeutic relationships and ensure that digital CR is accessible,equitable,and seamlessly integrated into routine cardiac care.Theoretical frameworks that accommodate the dynamic quality of real-time monitoring and feedback feature of digital CR interventions should be considered to guide intervention development.
基金financially supported by the National Natural Science Foundation of China(Grant No.41972138)the Technology Major Project of China(Grant No.ZD2019-183007,2016ZX05002-002)。
文摘Microscopic seepage characteristics are critical for the evaluation of tight sandstone reservoirs.In this study,a digital core approach integrating microscopic seepage simulation and CT scanning was developed to characterize microscopic seepage and fracture effectiveness(the ratio of micro-fractures that contributes to fluid flow)of tight sandstones.Numerical simulations were carried out for characterizations of tight sandstones.The results show that the axial permeability of the investigated cylindrical tight sandstone from Junggar Basin in China is 0.460μm~2,while the radial permeability is 0.3723μm~2,and the axial and radial effective fracture ratios are 0.4387 and 0.4806,respectively,indicating that cracks are not fully developed and the connectivity between micro-cracks is poor.Directional permeability that is difficult to measure by laboratory experiments can be obtained readily using the proposed method in this paper.The results provide important information for improving the exploration and development of tight sandstone reservoirs.
文摘We are in the midst of a significant transformation regarding the way we produce products and deliver services thanks to the digitization of manufacturing and new connected supply-chains and co-creation systems.This article elaborates Digital Twins Approach to the current challenges of knowledge management when Industry 4.0 is emerging in industries and manufacturing.Industry 4.0 approach underlines the importance of Internet of Things and interactions between social and physical systems.Internet of Things(and also Internet of Services and Internet of Data)are new Internet infrastructure that marries advanced manufacturing techniques and service architectures with the I-o-T,I-o-S,and I-o-D to create manufacturing systems that are not only interconnected,but communicate,analyze,and use information to drive further intelligent action back in the physical world.This paper identifies four critical domains of synergy challenge:(1)man-to-man interaction;(2)man-to-machine interaction;(3)machine-to-man interaction;and finally(4)machine-to-machine interaction.Key conclusion is that new knowledge management challenges are closely linked to the challenges of synergic interactions between these four key interactions and accurate measurements of synergic interaction.
基金This project is supported by National Natural Science Foundation of China (No.E50575234).
文摘A direct digital design method (DDDM) of worm-gear drive is proposed. It is directly based on the simulation of manufacturing process and completely different from the conventional modeling method. The loaded tooth contact analysis (LTCA) method is analyzed, in which the advanced surface to surface searching technique is included. The influence of misalignment errors and contact deformations on contact zone and transmission error (TE) is discussed. Combined modification approach on worm tooth surface is presented. By means of DDDM and LTCA, it is very conven- ient to verify the effect of worm-gear drive's modification approach. The analysis results show that, the modification in profile direction reduces the sensitivity of worm-gear drive to misalignment errors and the modification in longitudinal direction decreases the TE. Thus the optimization design of worm-gear drive can be achieved prior to the actual manufacturing process.
基金supported by the Office of Science (BER), U.S. Department of Energy through Interagency Agreement DE-SC0001526the Australian Grain Research and Development Corporation (GRDC)
文摘This work evaluates the phenotypic response of the model grass (Brachypodium distacbyon (L.) P. Beauv.) to nitrogen and phosphorus nutrition using a combination of imaging techniques and destructive harvest of shoots and roots. Reference line Bd21-3 was grown in pots using 11 phosphorus and 11 nitrogen concentrations to establish a dose-response curve. Shoot biovolume and biomass, root length and biomass, and tissue phosphorus and nitrogen concentrations increased with nutrient concentration. Shoot biovolume, estimated by imaging, was highly correlated with dry weight (R2 〉 0.92) and both biovolume and growth rate responded strongly to nutrient availability. Higher nutrient supply increased nodal root length more than other root types. Photochemical efficiency was strongly reduced by low phosphorus concentrations as early as 1 week after germination, suggesting that this measurement may be suitable for high throughput screening of phosphorus response. In contrast, nitrogen concentration had little effect on photochemical efficiency. Changes in biovolume over time were used to compare growth rates of four accessions in response tonitrogen and phosphorus supply. We demonstrate that a time series image-based approach coupled with mathematical modeling provides higher resolution of genotypic response to nutrient supply than traditional destructive techniques and shows promise for high throughput screening and determina- tion of genomic regions associated with superior nutrient use efficiency.
基金supported by the MKE (Ministry of Knowledge Economy), Korea, under the ITRC (Informa-tion Technology Research Center)support program su-pervised by the NIPA (National IT Industry Promotion Agency) (NIPA-2009-C1090-0902-0018)
文摘Several approaches for fast generation of digital holograms of a three-dimensional (3D) object have been discussed. Among them, the novel look-up table (N-LUT) method is analyzed to dramatically reduce the number of pre-calculated fringe patterns required for computation of digital holograms of a 3D object by employing a new concept of principal fringe patterns, so that problems of computational complexity and huge memory size of the conventional ray-tracing and look-up table methods have been considerably alleviated. Meanwhile, as the 3D video images have a lot of temporally or spatially redundant data in their inter- and intra-frames, computation time of the 3D video holograms could be also reduced just by removing these redundant data. Thus, a couple of computational methods for generation of 3D video holograms by combined use of the N-LUT method and data compression algorithms are also presented and discussed. Some experimental results finally reveal that by using this approach a great reduction of computation time of 3D video holograms could be achieved.