The whole airspace phased array telemetry,track and command(TT&C)system is regarded as the development tendency of next generation TT&C system,and the distribution of the antenna units and the beamforming tech...The whole airspace phased array telemetry,track and command(TT&C)system is regarded as the development tendency of next generation TT&C system,and the distribution of the antenna units and the beamforming technology have sparked wide interest in this field.A method for antenna distribution is proposed based on the linear subarrays technology.A symmetrical truncated cone conformal array is composed of the linear subarrays placed on the generatrix.The impact of truncated cone bottom radius and elevation angle on beamforming are studied and simulated.Simulation results verify the system design.展开更多
A new recursive algorithm with the partial parallel structure based on the linearly constrained minimum variance (LCMV) criterion for adaptive monopulse systems is proposed. The weight vector associated with the ori...A new recursive algorithm with the partial parallel structure based on the linearly constrained minimum variance (LCMV) criterion for adaptive monopulse systems is proposed. The weight vector associated with the original whole antenna array is decomposed into several adaptive weight sub-vectors firstly. An adaptive algorithm based on the conventional LCMV principle is then deduced to update the weight sub-vectors for sum and difference beam, respectively. The optimal weight vector can be obtained after convergence. The required computational complexity is evaluated for the proposed technique, which is on the order of O(N) and less than that of the conventional LCMV method. The flow chart scheme with the partial parallel structure of the proposed algorithm is introduced. This scheme is easy to be implemented on a distributed computer/digital signal processor (DSP) system to solve the problems of the heavy computational burden and vast data transmission of the large-scale adaptive monopulse array. Then, the monopulse ratio and convergence rate of the proposed algorithm are evaluated by numerical simulations. Compared with some recent adaptive monopulse estimation methods, a better performance on computational complexity and monopulse ratio can be achieved with the proposed adaptive method.展开更多
For a large-scale adaptive array, the heavy computational load and the high-rate data transmission are two challenges in the implementation of an adaptive digital beamforming system. An efficient parallel digital beam...For a large-scale adaptive array, the heavy computational load and the high-rate data transmission are two challenges in the implementation of an adaptive digital beamforming system. An efficient parallel digital beamforming (DBF) algorithm based on the least mean square algorithm (PLMS) is proposed. An appropriate method is found to partition the least mean square (LMS) algorithm into a number of operational modules, which can be easily executed in a distributed-parallel-processing fashion. As a result, the proposed PLMS algorithm provides an effective solution that can alleviate the bottleneck of high-rate data transmission and reduce the computational cost. PLMS requires less computational load than that of the conventional parallel algorithms based on the recursive least square (RLS) algorithm, as well as it is easier to be implemented to do real time adaptive array processing. Moreover, low sidelobe of the beam pattern is obtained by constraining the static steering vector with Tschebyscheff coefficients. Finally, a scheme of the PLMS algorithm using distributed-parallel-processing system is also proposed. The simulation results demonstrate that the PLMS algorithm has the same interference cancellation performance as that of the conventional LMS algorithm. Moreover, the PLMS algorithm can obtain the same good beamforming performance, regardless how the algorithm is partitioned. It is expected that the proposed algorithm will be used in a large-scale adaptive array system to deal with real time adaptive digital beamforming processing.展开更多
This paper focuses on the design and implementation of an active multibeam antenna system for massive MIMO applications in 5G wireless communications.The highly integrated active multibeam antenna system is designed a...This paper focuses on the design and implementation of an active multibeam antenna system for massive MIMO applications in 5G wireless communications.The highly integrated active multibeam antenna system is designed and implemented at 5.8 GHz with 64 RF Channels and 256 antenna elements.The 64-channel highly integrated active multibeam antenna system provides a verification platform for digital beamforming algorithm and massive MIMO channel estimation for next generation wireless communications.展开更多
The developments of the high speed analog to digital converters (ADC) and advanced digital signal processors (DSP) make the smart antenna with digital beamforming (DBF) a reality. In conventional M-elements arra...The developments of the high speed analog to digital converters (ADC) and advanced digital signal processors (DSP) make the smart antenna with digital beamforming (DBF) a reality. In conventional M-elements array antenna system, each element has its own receiving channel and ADCs. In this paper, a novel smart antenna receiver with digital beamforming is proposed. The essential idea is to realize the digital beamforming receiver based on bandpass sampling of multiple distinct intermediate frequency (IF) signals. The proposed system reduces receiver hardware from M IF channels and 2M ADCs to one IF channel and one ADC using a heterodyne radio frequency (RF) circuitry and a multiple bandpass sampling digital receiver. In this scheme, the sampling rate of the ADC is much higher than the summation of the M times of the signal bandwidth. The local oscillator produces different local frequency for each RF channel The receiver architecture is presented in detail, and the simulation of bandpass sampling of multiple signals and digital down conversion to baseband is given. The principle analysis and simulation results indicate the effectiveness of the new proposed receiver.展开更多
A kind of beam-scanning algorithm of variable polarization millimeter array antenna based on the phased array technology is put forward in this paper. The algorithm can be successfully applied to deal with beam direct...A kind of beam-scanning algorithm of variable polarization millimeter array antenna based on the phased array technology is put forward in this paper. The algorithm can be successfully applied to deal with beam directivities inconsistency of millimeter wave/infrared( MMW/IR ) multimode detector, it can keep electric axis and optical axis coincident. Accordingly, this method can decrease the data fusion difficulty and improve the accuracy of angle measurement. Simulation results show that variable polarization millimeter array antenna has flexible beam-scanning abibility within ±0.5° after the algorithm was adopted, simultaneously, antenna polarization purity is better than 20 dB within the half power beamwidth, sidelobe imbalance keeps high available and antenna gain of the sum beam is over 26.8 dB.展开更多
The fifth generation mobile communication(5G) systems can provide Gbit/s data rates from massive multiple-input multiple-output(MIMO) combined with the emerging use of millimeter wavelengths in small heterogeneous...The fifth generation mobile communication(5G) systems can provide Gbit/s data rates from massive multiple-input multiple-output(MIMO) combined with the emerging use of millimeter wavelengths in small heterogeneous cells. This paper develops an energy-efficiency based multi-user hybrid beamforming for downlink millimeter wave(mm Wave) massive MIMO systems. To make better use of directivity gains of the analog beamforming and flexible baseband processing of the digital beamforming, this paper proposes the analog beamforming to select the optimal beam which can maximize the power of the objective user and minimize the interference to all other users. In addition, the digital beamforming maximizes the energy efficiency of the objective user with zero-gradient-based approach. Simulation results show the proposed algorithm provide better bit error rate(BER) performance compared with the traditional hybrid beamforming and obviously improved the sum rate with the increase in the number of users. It is proved that multi-user MIMO(MU-MIMO) can be a perfect candidate for mm Wave massive MIMO communication system. Furthermore, the analog beamforming can mitigate the inter-user interference more effectively with the selection of the optimal beam and the digital beamforming can greatly improve the system performance through flexible baseband processing.展开更多
With regard to problems in conventional synthetic aperture radar (SAR), such as imaging distortion, beam limitation and failure in acquiring three-dimensional (3-D) information, a downward-looking 3-D imaging meth...With regard to problems in conventional synthetic aperture radar (SAR), such as imaging distortion, beam limitation and failure in acquiring three-dimensional (3-D) information, a downward-looking 3-D imaging method based on frequency modulated continuous wave (FMCW) and digital beamforming (DBF) technology for airborne SAR is presented in this study. Downward-looking 3-D SAR signal model is established first, followed by introduction of virtual antenna optimization factor and discussion of equivalent-phase-center compensation. Then, compensation method is provided according to reside video phase (RVP) and slope term for FMCW SAR. As multiple receiving antennas are applied to downward-looking 3-D imaging SAR, range cell migration correction (RCMC) turns to be more complex, and corrective measures are proposed. In addition, DBF technology is applied in realizing cross-track resolution. Finally, to validate the proposed method, magnitude of slice, peak sidelobe ratio (PSLR), integrated sidelobe ratio (ISLR) and two-dimensional (2-D) contour plot of impulse response function (IRF) of point target in three dimensions are demonstrated. Satisfactory performances are shown by simulation results.展开更多
文摘The whole airspace phased array telemetry,track and command(TT&C)system is regarded as the development tendency of next generation TT&C system,and the distribution of the antenna units and the beamforming technology have sparked wide interest in this field.A method for antenna distribution is proposed based on the linear subarrays technology.A symmetrical truncated cone conformal array is composed of the linear subarrays placed on the generatrix.The impact of truncated cone bottom radius and elevation angle on beamforming are studied and simulated.Simulation results verify the system design.
基金supported by the National Natural Science Foundation of China(11273017)
文摘A new recursive algorithm with the partial parallel structure based on the linearly constrained minimum variance (LCMV) criterion for adaptive monopulse systems is proposed. The weight vector associated with the original whole antenna array is decomposed into several adaptive weight sub-vectors firstly. An adaptive algorithm based on the conventional LCMV principle is then deduced to update the weight sub-vectors for sum and difference beam, respectively. The optimal weight vector can be obtained after convergence. The required computational complexity is evaluated for the proposed technique, which is on the order of O(N) and less than that of the conventional LCMV method. The flow chart scheme with the partial parallel structure of the proposed algorithm is introduced. This scheme is easy to be implemented on a distributed computer/digital signal processor (DSP) system to solve the problems of the heavy computational burden and vast data transmission of the large-scale adaptive monopulse array. Then, the monopulse ratio and convergence rate of the proposed algorithm are evaluated by numerical simulations. Compared with some recent adaptive monopulse estimation methods, a better performance on computational complexity and monopulse ratio can be achieved with the proposed adaptive method.
文摘For a large-scale adaptive array, the heavy computational load and the high-rate data transmission are two challenges in the implementation of an adaptive digital beamforming system. An efficient parallel digital beamforming (DBF) algorithm based on the least mean square algorithm (PLMS) is proposed. An appropriate method is found to partition the least mean square (LMS) algorithm into a number of operational modules, which can be easily executed in a distributed-parallel-processing fashion. As a result, the proposed PLMS algorithm provides an effective solution that can alleviate the bottleneck of high-rate data transmission and reduce the computational cost. PLMS requires less computational load than that of the conventional parallel algorithms based on the recursive least square (RLS) algorithm, as well as it is easier to be implemented to do real time adaptive array processing. Moreover, low sidelobe of the beam pattern is obtained by constraining the static steering vector with Tschebyscheff coefficients. Finally, a scheme of the PLMS algorithm using distributed-parallel-processing system is also proposed. The simulation results demonstrate that the PLMS algorithm has the same interference cancellation performance as that of the conventional LMS algorithm. Moreover, the PLMS algorithm can obtain the same good beamforming performance, regardless how the algorithm is partitioned. It is expected that the proposed algorithm will be used in a large-scale adaptive array system to deal with real time adaptive digital beamforming processing.
文摘This paper focuses on the design and implementation of an active multibeam antenna system for massive MIMO applications in 5G wireless communications.The highly integrated active multibeam antenna system is designed and implemented at 5.8 GHz with 64 RF Channels and 256 antenna elements.The 64-channel highly integrated active multibeam antenna system provides a verification platform for digital beamforming algorithm and massive MIMO channel estimation for next generation wireless communications.
基金Supported by the Foundation of Aeronautics Science (No. 03F52042)
文摘The developments of the high speed analog to digital converters (ADC) and advanced digital signal processors (DSP) make the smart antenna with digital beamforming (DBF) a reality. In conventional M-elements array antenna system, each element has its own receiving channel and ADCs. In this paper, a novel smart antenna receiver with digital beamforming is proposed. The essential idea is to realize the digital beamforming receiver based on bandpass sampling of multiple distinct intermediate frequency (IF) signals. The proposed system reduces receiver hardware from M IF channels and 2M ADCs to one IF channel and one ADC using a heterodyne radio frequency (RF) circuitry and a multiple bandpass sampling digital receiver. In this scheme, the sampling rate of the ADC is much higher than the summation of the M times of the signal bandwidth. The local oscillator produces different local frequency for each RF channel The receiver architecture is presented in detail, and the simulation of bandpass sampling of multiple signals and digital down conversion to baseband is given. The principle analysis and simulation results indicate the effectiveness of the new proposed receiver.
基金Supported by the Ministerial Level Advanced Research Foundation (613280609)
文摘A kind of beam-scanning algorithm of variable polarization millimeter array antenna based on the phased array technology is put forward in this paper. The algorithm can be successfully applied to deal with beam directivities inconsistency of millimeter wave/infrared( MMW/IR ) multimode detector, it can keep electric axis and optical axis coincident. Accordingly, this method can decrease the data fusion difficulty and improve the accuracy of angle measurement. Simulation results show that variable polarization millimeter array antenna has flexible beam-scanning abibility within ±0.5° after the algorithm was adopted, simultaneously, antenna polarization purity is better than 20 dB within the half power beamwidth, sidelobe imbalance keeps high available and antenna gain of the sum beam is over 26.8 dB.
基金supported by the Hi-Tech Research and Development Program of China(2014AA01A705)
文摘The fifth generation mobile communication(5G) systems can provide Gbit/s data rates from massive multiple-input multiple-output(MIMO) combined with the emerging use of millimeter wavelengths in small heterogeneous cells. This paper develops an energy-efficiency based multi-user hybrid beamforming for downlink millimeter wave(mm Wave) massive MIMO systems. To make better use of directivity gains of the analog beamforming and flexible baseband processing of the digital beamforming, this paper proposes the analog beamforming to select the optimal beam which can maximize the power of the objective user and minimize the interference to all other users. In addition, the digital beamforming maximizes the energy efficiency of the objective user with zero-gradient-based approach. Simulation results show the proposed algorithm provide better bit error rate(BER) performance compared with the traditional hybrid beamforming and obviously improved the sum rate with the increase in the number of users. It is proved that multi-user MIMO(MU-MIMO) can be a perfect candidate for mm Wave massive MIMO communication system. Furthermore, the analog beamforming can mitigate the inter-user interference more effectively with the selection of the optimal beam and the digital beamforming can greatly improve the system performance through flexible baseband processing.
文摘With regard to problems in conventional synthetic aperture radar (SAR), such as imaging distortion, beam limitation and failure in acquiring three-dimensional (3-D) information, a downward-looking 3-D imaging method based on frequency modulated continuous wave (FMCW) and digital beamforming (DBF) technology for airborne SAR is presented in this study. Downward-looking 3-D SAR signal model is established first, followed by introduction of virtual antenna optimization factor and discussion of equivalent-phase-center compensation. Then, compensation method is provided according to reside video phase (RVP) and slope term for FMCW SAR. As multiple receiving antennas are applied to downward-looking 3-D imaging SAR, range cell migration correction (RCMC) turns to be more complex, and corrective measures are proposed. In addition, DBF technology is applied in realizing cross-track resolution. Finally, to validate the proposed method, magnitude of slice, peak sidelobe ratio (PSLR), integrated sidelobe ratio (ISLR) and two-dimensional (2-D) contour plot of impulse response function (IRF) of point target in three dimensions are demonstrated. Satisfactory performances are shown by simulation results.