The object detectors can precisely detect the camouflaged object beyond human perception.The investigations reveal that the CNNs-based(Convolution Neural Networks)detectors are vulnerable to adversarial attacks.Some w...The object detectors can precisely detect the camouflaged object beyond human perception.The investigations reveal that the CNNs-based(Convolution Neural Networks)detectors are vulnerable to adversarial attacks.Some works can fool detectors by crafting the adversarial camouflage attached to the object,leading to wrong prediction.It is hard for military operations to utilize the existing adversarial camouflage due to its conspicuous appearance.Motivated by this,this paper proposes the Dual Attribute Adversarial Camouflage(DAAC)for evading the detection by both detectors and humans.Generating DAAC includes two steps:(1)Extracting features from a specific type of scene to generate individual soldier digital camouflage;(2)Attaching the adversarial patch with scene features constraint to the individual soldier digital camouflage to generate the adversarial attribute of DAAC.The visual effects of the individual soldier digital camouflage and the adversarial patch will be improved after integrating with the scene features.Experiment results show that objects camouflaged by DAAC are well integrated with background and achieve visual concealment while remaining effective in fooling object detectors,thus evading the detections by both detectors and humans in the digital domain.This work can serve as the reference for crafting the adversarial camouflage in the physical world.展开更多
The digital camouflage spraying of special vehicles carried out by robots can greatly improve the spraying efficiency, spraying quality, and rapid adaptability to personalized patterns. The selection of spray tool and...The digital camouflage spraying of special vehicles carried out by robots can greatly improve the spraying efficiency, spraying quality, and rapid adaptability to personalized patterns. The selection of spray tool and the accuracy of the adopted mathematical spray tool model has a great impact on the effectiveness of spray path planning and spraying quality. Since traditional conical spray tool models are not suitable for spraying rectangular digital camouflage, according to the characteristics of digital camouflage, the coating thickness cumulative distribution model of strip nozzle spray tool for 2 D plane spraying and 3 D surface spraying is derived, and its validity is verified by simulation. Based on the accumulation velocity model of the coating thickness(AVCT) on the curved surface and aiming at spraying path planning within the same surface and different surfaces, a path parameter optimization method based on coating uniformity evaluation of adjacent path overlapping area is proposed. Combined with the vehicle surface model, parameters such as path interval, spray tool angle and spray tool motion velocity can be calculated in real-time to ensure uniform coating. Based on the known local three-dimensional model of vehicle surface and the comprehensive spraying simulation, the validity of the purposed models: the coating thickness on the adjacent path area(CTAPA), the coating thickness on the intersection of two surfaces(CTITS), the coating thickness on the intersection of a plane and a surface(CTIPS), and the optimization method of path parameters are verified. The results show that compared with the traditional spray tool, the strip nozzle can better ensure the uniformity of the coating thickness of digital camouflage spray. Finally, according to a practical spraying experiment, the results prove that the proposed models not only are effective but also meet the practical industrial requirements and are of great practical value.展开更多
基金National Natural Science Foundation of China(grant number 61801512,grant number 62071484)Natural Science Foundation of Jiangsu Province(grant number BK20180080)to provide fund for conducting experiments。
文摘The object detectors can precisely detect the camouflaged object beyond human perception.The investigations reveal that the CNNs-based(Convolution Neural Networks)detectors are vulnerable to adversarial attacks.Some works can fool detectors by crafting the adversarial camouflage attached to the object,leading to wrong prediction.It is hard for military operations to utilize the existing adversarial camouflage due to its conspicuous appearance.Motivated by this,this paper proposes the Dual Attribute Adversarial Camouflage(DAAC)for evading the detection by both detectors and humans.Generating DAAC includes two steps:(1)Extracting features from a specific type of scene to generate individual soldier digital camouflage;(2)Attaching the adversarial patch with scene features constraint to the individual soldier digital camouflage to generate the adversarial attribute of DAAC.The visual effects of the individual soldier digital camouflage and the adversarial patch will be improved after integrating with the scene features.Experiment results show that objects camouflaged by DAAC are well integrated with background and achieve visual concealment while remaining effective in fooling object detectors,thus evading the detections by both detectors and humans in the digital domain.This work can serve as the reference for crafting the adversarial camouflage in the physical world.
基金supported by Key Research and Development Program of China (No. 2018YFB1306303)。
文摘The digital camouflage spraying of special vehicles carried out by robots can greatly improve the spraying efficiency, spraying quality, and rapid adaptability to personalized patterns. The selection of spray tool and the accuracy of the adopted mathematical spray tool model has a great impact on the effectiveness of spray path planning and spraying quality. Since traditional conical spray tool models are not suitable for spraying rectangular digital camouflage, according to the characteristics of digital camouflage, the coating thickness cumulative distribution model of strip nozzle spray tool for 2 D plane spraying and 3 D surface spraying is derived, and its validity is verified by simulation. Based on the accumulation velocity model of the coating thickness(AVCT) on the curved surface and aiming at spraying path planning within the same surface and different surfaces, a path parameter optimization method based on coating uniformity evaluation of adjacent path overlapping area is proposed. Combined with the vehicle surface model, parameters such as path interval, spray tool angle and spray tool motion velocity can be calculated in real-time to ensure uniform coating. Based on the known local three-dimensional model of vehicle surface and the comprehensive spraying simulation, the validity of the purposed models: the coating thickness on the adjacent path area(CTAPA), the coating thickness on the intersection of two surfaces(CTITS), the coating thickness on the intersection of a plane and a surface(CTIPS), and the optimization method of path parameters are verified. The results show that compared with the traditional spray tool, the strip nozzle can better ensure the uniformity of the coating thickness of digital camouflage spray. Finally, according to a practical spraying experiment, the results prove that the proposed models not only are effective but also meet the practical industrial requirements and are of great practical value.