期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Digital cancellation of multi-band passive inter-modulation based on Wiener-Hammerstein model
1
作者 Jinxiang Liu Xiaotao Zhang +1 位作者 Jun Yang Huiping Yang 《Digital Communications and Networks》 SCIE CSCD 2024年第4期1189-1197,共9页
Utilizing multi-band and multi-carrier techniques enhances throughput and capacity in Long-Term Evolution(LTE)-Advanced and 5G New Radio(NR)mobile networks.However,these techniques introduce Passive Inter-Modulation(P... Utilizing multi-band and multi-carrier techniques enhances throughput and capacity in Long-Term Evolution(LTE)-Advanced and 5G New Radio(NR)mobile networks.However,these techniques introduce Passive Inter-Modulation(PIM)interference in Frequency-Division Duplexing(FDD)systems.In this paper,a novel multi-band Wiener-Hammerstein model is presented to digitally reconstruct PIM interference signals,thereby achieving effective PIM Cancellation(PIMC)in multi-band scenarios.In the model,transmitted signals are independently processed to simulate Inter-Modulation Distortions(IMDs)and Cross-Modulation Distortions(CMDs).Furthermore,the Finite Impulse Response(FIR)filter,basis function generation,and B-spline function are applied for precise PIM product estimation and generation in multi-band scenarios.Simulations involving 4 carrier components from diverse NR frequency bands at varying transmitting powers validate the feasibility of the model for multi-band PIMC,achieving up to 19 dB in PIMC performance.Compared to other models,this approach offers superior PIMC performance,exceeding them by more than 5 dB in high transmitting power scenarios.Additionally,its lower sampling rate requirement reduces the hardware complexity associated with implementing multi-band PIMC. 展开更多
关键词 Passive inter-modulation Frequency-division duplexing Nonlinear distortion digital cancellation Spline interpolation Wiener-Hammerstein model
下载PDF
Adaptive digital self-interference cancellation based on fractional order LMS in LFMCW radar 被引量:6
2
作者 LUO Yongjiang BI Luhao ZHAO Dong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第3期573-583,共11页
Adaptive digital self-interference cancellation(ADSIC)is a significant method to suppress self-interference and improve the performance of the linear frequency modulated continuous wave(LFMCW)radar.Due to efficient im... Adaptive digital self-interference cancellation(ADSIC)is a significant method to suppress self-interference and improve the performance of the linear frequency modulated continuous wave(LFMCW)radar.Due to efficient implementation structure,the conventional method based on least mean square(LMS)is widely used,but its performance is not sufficient for LFMCW radar.To achieve a better self-interference cancellation(SIC)result and more optimal radar performance,we present an ADSIC method based on fractional order LMS(FOLMS),which utilizes the multi-path cancellation structure and adaptively updates the weight coefficients of the cancellation system.First,we derive the iterative expression of the weight coefficients by using the fractional order derivative and short-term memory principle.Then,to solve the problem that it is difficult to select the parameters of the proposed method due to the non-stationary characteristics of radar transmitted signals,we construct the performance evaluation model of LFMCW radar,and analyze the relationship between the mean square deviation and the parameters of FOLMS.Finally,the theoretical analysis and simulation results show that the proposed method has a better SIC performance than the conventional methods. 展开更多
关键词 adaptive digital self-interference cancellation(ADSIC) linear frequency modulated continuous wave(LFMCW)radar fractional order least mean square(LMS)
下载PDF
A programmable gain amplifier with digitally assisted DC offset calibration for a direct-conversion WLAN receiver 被引量:1
3
作者 姚小城 龚正 石寅 《Journal of Semiconductors》 EI CAS CSCD 2012年第11期90-94,共5页
This paper presents a programmable gain amplifier(PGA) circuit with a digitally assisted DC offset cancellation(DCOC) scheme for a direct conversion WLAN receiver.Implemented in a standard 0.13-μm CMOS process,th... This paper presents a programmable gain amplifier(PGA) circuit with a digitally assisted DC offset cancellation(DCOC) scheme for a direct conversion WLAN receiver.Implemented in a standard 0.13-μm CMOS process,the PGA occupies 0.39 mm2 die area and dissipates 6.5 mW power from a 1.2 V power supply.By using a single loop single digital-to-analog converter(DAC) mixed signal DC offset cancellation topology,the minimum DCOC settling time achieved is as short as 1.6μs with the PGA gain ranging from -8 to 54 dB in a 2 dB step.The DCOC loop utilizes a segmented DAC structure to lower the design complexity without sacrificing accuracy and a digital control algorithm to dynamically set the DCOC loop to fast or normal response mode,making the PGA circuit in compliance with the targeted WLAN specifications. 展开更多
关键词 direct conversion receiver digital assisted DC offset cancellation segmented current mode digital-to-analog converter settling time
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部