A discrimination measurement method and demodulation technique for fiber Bragg grating (FBG) sensors were presented using digital filtering technique. The system can control a tunable fiber Fabry-Perot filter with saw...A discrimination measurement method and demodulation technique for fiber Bragg grating (FBG) sensors were presented using digital filtering technique. The system can control a tunable fiber Fabry-Perot filter with sawtooth wave voltage generated by digital clock to interrogate FBG sensors. Using the analogue digital converter (ADC), the reflected FBG signals were sampled with synchronous digital clock. With the aid of digital matched filtering technique, the sampled FBG signals were processed to obtain the maximum signal-to-noise ratio (SNR) and the Bragg wavelength shift from the FBG signals was recovered. The results demonstrate that this system has a scanning range of 1 520 nm-1 575 nm,and the wavelength detection accuracy is less than 2 pm with 1.5 Hz scanning frequency.展开更多
Wearable strain sensors have attracted research interest owing to their poten-tial within digital healthcare,offering smarter tracking,efficient diagnostics,and lower costs.Unlike rigid sensors,fiber-based ones compet...Wearable strain sensors have attracted research interest owing to their poten-tial within digital healthcare,offering smarter tracking,efficient diagnostics,and lower costs.Unlike rigid sensors,fiber-based ones compete with their flexibility,durability,adaptability to body structures as well as eco-friendliness to envi-ronment.Here,the sustainable fiber-based wearable strain sensors for digital health are reviewed,and material,fabrication,and practical healthcare aspects are explored.Typical strain sensors predicated on various sensing modalities,be it resistive,capacitive,piezoelectric,or triboelectric,are explained and analyzed according to their strengths and weaknesses toward fabrication and applica-tions.The applications in digital healthcare spanning from body area sensing networks,intelligent health management,and medical rehabilitation to mul-tifunctional healthcare systems are also evaluated.Moreover,to create a more complete digital health network,wired and wireless methods of data collec-tion and examples of machine learning are elaborated in detail.Finally,the prevailing challenges and prospective insights into the advancement of novel fibers,enhancement of sensing precision and wearability,and the establishment of seamlessly integrated systems are critically summarized and offered.This endeavor not only encapsulates the present landscape but also lays the founda-tion for future breakthroughs in fiber-based wearable strain sensor technology within the domain of digital health.展开更多
Optical fiber acceleration seismometer as an important instrument can offer high sensitivity, anti-jamming and non-touched advantage which has an extensive application field. Its signal processing ability will decide ...Optical fiber acceleration seismometer as an important instrument can offer high sensitivity, anti-jamming and non-touched advantage which has an extensive application field. Its signal processing ability will decide whole system’s performance to some extent because it will affect directly the factors such as resolving power, precision and dynamic range. The signal processing is usually realized by analog circuits which was more inferior in stability, flexibility and anti-jamming to digital processing system. A digital processing system of optical fiber acceleration seismometer has been designed based on the embedded system design scheme. Synthetic-heterodyne demodulation has been studied, and signal processing has been realized. The double processors of ARM and DSP are employed to implement respectively the system control and signal processing, and to provide the output interfaces such as LCD, DAC and Ethernet interface. This system can vary with the measured signal in real time and linearly, and its work frequency bandwidth is between 10Hz and 1kHz. The system has better anti-jamming ability and can work normally when the SNR is 40dB.展开更多
The digital monitoring principle and technologies for heavy duty mechanical equipment based on fiber Bragg grating (FBG) technology are introduced in this paper. The fundamentals of new-style FBG sensing technology, i...The digital monitoring principle and technologies for heavy duty mechanical equipment based on fiber Bragg grating (FBG) technology are introduced in this paper. The fundamentals of new-style FBG sensing technology, including the photorefractive effect of FBG, the physical formation, and the relation between optical properties and grating parameters, are investigated. The plaster, encapsulation and distribution planning of FBG sensor (FBGS), which is used to monitor heavy duty mechanical equipment under abominable environment and extreme conditions, are also studied. In addition, theoretical and experimental researches on the strain, temperature, displacement, and stress transmission characteristics between FBGS and detection interface are presented. The principle and method for temperature compensation in non-uniformity temperature field are described in detail as well. Comparing with the traditional sensing monitoring techniques, the application of FBGS technology on digital monitoring and diagnosis for heavy duty mechanical equipment has a number of significant technical advantages and will make a new breakthrough in this field.展开更多
设计了一种新型光纤电流互感器(Optical fiber Current Transformer,简称OCT),采用光纤传感技术与电子技术相结合的方法,研制出电压等级为110kV,额定电流为1kA的样机。该样机已经通过有关测试,其精度达到±0.2%。与传统的电流互感...设计了一种新型光纤电流互感器(Optical fiber Current Transformer,简称OCT),采用光纤传感技术与电子技术相结合的方法,研制出电压等级为110kV,额定电流为1kA的样机。该样机已经通过有关测试,其精度达到±0.2%。与传统的电流互感器相比,这种新型光纤电流互感器具有精度高、体积小、造价低、良好的动态特性和不受电磁干扰等优点。展开更多
基金Doctoral Foundation of Ministry of Education of China (No. 20040056008)
文摘A discrimination measurement method and demodulation technique for fiber Bragg grating (FBG) sensors were presented using digital filtering technique. The system can control a tunable fiber Fabry-Perot filter with sawtooth wave voltage generated by digital clock to interrogate FBG sensors. Using the analogue digital converter (ADC), the reflected FBG signals were sampled with synchronous digital clock. With the aid of digital matched filtering technique, the sampled FBG signals were processed to obtain the maximum signal-to-noise ratio (SNR) and the Bragg wavelength shift from the FBG signals was recovered. The results demonstrate that this system has a scanning range of 1 520 nm-1 575 nm,and the wavelength detection accuracy is less than 2 pm with 1.5 Hz scanning frequency.
基金Hong Kong Polytechnic University,Grant/Award Number:1-WZ1YNational Natural Science Foundation of China,Grant/Award Number:82374295。
文摘Wearable strain sensors have attracted research interest owing to their poten-tial within digital healthcare,offering smarter tracking,efficient diagnostics,and lower costs.Unlike rigid sensors,fiber-based ones compete with their flexibility,durability,adaptability to body structures as well as eco-friendliness to envi-ronment.Here,the sustainable fiber-based wearable strain sensors for digital health are reviewed,and material,fabrication,and practical healthcare aspects are explored.Typical strain sensors predicated on various sensing modalities,be it resistive,capacitive,piezoelectric,or triboelectric,are explained and analyzed according to their strengths and weaknesses toward fabrication and applica-tions.The applications in digital healthcare spanning from body area sensing networks,intelligent health management,and medical rehabilitation to mul-tifunctional healthcare systems are also evaluated.Moreover,to create a more complete digital health network,wired and wireless methods of data collec-tion and examples of machine learning are elaborated in detail.Finally,the prevailing challenges and prospective insights into the advancement of novel fibers,enhancement of sensing precision and wearability,and the establishment of seamlessly integrated systems are critically summarized and offered.This endeavor not only encapsulates the present landscape but also lays the founda-tion for future breakthroughs in fiber-based wearable strain sensor technology within the domain of digital health.
文摘Optical fiber acceleration seismometer as an important instrument can offer high sensitivity, anti-jamming and non-touched advantage which has an extensive application field. Its signal processing ability will decide whole system’s performance to some extent because it will affect directly the factors such as resolving power, precision and dynamic range. The signal processing is usually realized by analog circuits which was more inferior in stability, flexibility and anti-jamming to digital processing system. A digital processing system of optical fiber acceleration seismometer has been designed based on the embedded system design scheme. Synthetic-heterodyne demodulation has been studied, and signal processing has been realized. The double processors of ARM and DSP are employed to implement respectively the system control and signal processing, and to provide the output interfaces such as LCD, DAC and Ethernet interface. This system can vary with the measured signal in real time and linearly, and its work frequency bandwidth is between 10Hz and 1kHz. The system has better anti-jamming ability and can work normally when the SNR is 40dB.
基金Supported by the National Natural Science Foundation of China (Grant Nos.50620130441 and 50775167)
文摘The digital monitoring principle and technologies for heavy duty mechanical equipment based on fiber Bragg grating (FBG) technology are introduced in this paper. The fundamentals of new-style FBG sensing technology, including the photorefractive effect of FBG, the physical formation, and the relation between optical properties and grating parameters, are investigated. The plaster, encapsulation and distribution planning of FBG sensor (FBGS), which is used to monitor heavy duty mechanical equipment under abominable environment and extreme conditions, are also studied. In addition, theoretical and experimental researches on the strain, temperature, displacement, and stress transmission characteristics between FBGS and detection interface are presented. The principle and method for temperature compensation in non-uniformity temperature field are described in detail as well. Comparing with the traditional sensing monitoring techniques, the application of FBGS technology on digital monitoring and diagnosis for heavy duty mechanical equipment has a number of significant technical advantages and will make a new breakthrough in this field.
文摘设计了一种新型光纤电流互感器(Optical fiber Current Transformer,简称OCT),采用光纤传感技术与电子技术相结合的方法,研制出电压等级为110kV,额定电流为1kA的样机。该样机已经通过有关测试,其精度达到±0.2%。与传统的电流互感器相比,这种新型光纤电流互感器具有精度高、体积小、造价低、良好的动态特性和不受电磁干扰等优点。