Rock fracture mechanics and accurate characterization of rock fracture are crucial for understanding a variety of phenomena interested in geological engineering and geoscience.These phenomena range from very large-sca...Rock fracture mechanics and accurate characterization of rock fracture are crucial for understanding a variety of phenomena interested in geological engineering and geoscience.These phenomena range from very large-scale asymmetrical fault structures to the scale of engineering projects and laboratory-scale rock fracture tests.Comprehensive study can involve mechanical modeling,site or post-mortem investigations,and inspection on the point cloud of the source locations in the form of earthquake,microseismicity,or acoustic emission.This study presents a comprehensive data analysis on characterizing the forming of the asymmetrical damage zone around a laboratory mixed-mode rock fracture.We substantiate the presence of asymmetrical damage through qualitative analysis and demonstrate that measurement uncertainties cannot solely explain the observed asymmetry.The implications of this demonstration can be manifold.On a larger scale,it solidifies a mechanical model used for explaining the contribution of aseismic mechanisms to asymmetrical fault structures.On a laboratory scale,it exemplifies an alternative approach to understanding the observational difference between the source location and the in situ or post-mortem inspection on the rock fracture path.The mechanical model and the data analysis can be informative to the interpretations of other engineering practices as well,but may face different types of challenges.展开更多
In spacecraft electronic devices,the deformation of solder balls within ball grid array(BGA)packages poses a significant risk of system failure.Therefore,accurately measuring the mechanical behavior of solder balls is...In spacecraft electronic devices,the deformation of solder balls within ball grid array(BGA)packages poses a significant risk of system failure.Therefore,accurately measuring the mechanical behavior of solder balls is crucial for ensuring the safety and reliability of spacecraft.Although finite element simulations have been extensively used to study solder ball deformation,there is a significant lack of experimental validation,particularly under thermal cycling conditions.This is due to the challenges in accurately measuring the internal deformations of solder balls and eliminating the rigid body displacement introduced during ex-situ thermal cycling tests.In this work,an ex-situ three-dimensional deformation measurement method using X-ray computed tomography(CT)and digital volume correlation(DVC)is proposed to overcome these obstacles.By incorporating the layer-wise reliability-guided displacement tracking(LW-RGDT)DVC with a singular value decomposition(SVD)method,this method enables accurate assessment of solder ball mechanical behavior in BGA packages without the influence of rigid body displacement.Experimental results reveal that BGA structures exhibit progressive convex deformation with increased thermal cycling,particularly in peripheral solder balls.This method provides a reliable and effective tool for assessing internal deformations in electronic packages under ex-situ conditions,which is crucial for their design optimization and lifespan predictions.展开更多
The anisotropy induced by rock bedding structures is usually manifested in the mechanical behaviors and failure modes of rocks.Brazilian tests are conducted for seven groups of shale specimens featuring different bedd...The anisotropy induced by rock bedding structures is usually manifested in the mechanical behaviors and failure modes of rocks.Brazilian tests are conducted for seven groups of shale specimens featuring different bedding angles. Acoustic emission (AE) and digital image correlation (DIC) technologies are used to monitor the in-situ failure of the specimens. Furthermore, the crack morphology of damaged samples is observed through scanning electron microscopy (SEM). Results reveal the structural dependence on the tensile mechanical behavior of shales. The shale disk exhibits compression in the early stage of the experiment with varying locations and durations. The location of the compression area moves downward and gradually disappears when the bedding angle increases. The macroscopic failure is well characterized by AE event location results, and the dominant frequency distribution is related to the bedding angle. The b-value is found to be stress-dependent.The crack turning angle between layers and the number of cracks crossing the bedding both increase with the bedding angle, indicating competition between crack propagations. SEM results revealed that the failure modes of the samples can be classified into three types:tensile failure along beddings with shear failure of the matrix, ladder shear failure along beddings with tensile failure of the matrix, and shear failure along multiple beddings with tensile failure of the matrix.展开更多
The mesomechanics of geotechnical materials are closely related to the macromechanical properties,especially the mesoscale evolution of shear bands,which is helpful for understanding the failure mechanism of geotechni...The mesomechanics of geotechnical materials are closely related to the macromechanical properties,especially the mesoscale evolution of shear bands,which is helpful for understanding the failure mechanism of geotechnical materials.However,there is lack of effective quantitative analysis method for the complex evolution mechanism of threedimensional shear bands.In this work,we used X-ray computed tomography(CT)to reconstruct volume images and used the digital volume correlation(DVC)method to calculate the three-dimensional strain fields of granite residual soil samples at different loading stages.The trend of the failure surface of the shear bands was obtained by the planar fitting method,and the connectivity index was constructed according to the projection characteristics of the shear bands on the failure trend surface.The results support the following findings:the connectivity index of the shear band increases rapidly and then slowly with increasing axial strain,which is characterized by a near'S'curve.As the stress reaches the peak value,the connectivity index of the shear bands almost exceeds 0.7.The contribution of the new shear band volume to the connectivity of the shear bands becomes increasingly small with increasing axial loading.Affected by quartz grains and stress at the initial stage,the dip angle gradually and finally approaches the included angle of the maximum shear stress from the discrete state with increasing axial loading.The tendency and dip angle of the resulting shear bands are dynamic,and the tendency slightly deflects with increasing loading.展开更多
Three-dimensional(3D)printing technology is increasingly used in experimental research of geotechnical engineering.Compared to other materials,3D layer-by-layer printing specimens are extremely similar to the inherent...Three-dimensional(3D)printing technology is increasingly used in experimental research of geotechnical engineering.Compared to other materials,3D layer-by-layer printing specimens are extremely similar to the inherent properties of natural layered rock masses.In this paper,soft-hard interbedded rock masses with different dip angles were prepared based on 3D printing(3DP)sand core technology.Uniaxial compression creep tests were conducted to investigate its anisotropic creep behavior based on digital imaging correlation(DIC)technology.The results show that the anisotropic creep behavior of the 3DP soft-hard interbedded rock mass is mainly affected by the dip angles of the weak interlayer when the stress is at low levels.As the stress level increases,the effect of creep stress on its creep anisotropy increases significantly,and the dip angle is no longer the main factor.The minimum value of the long-term strength and creep failure strength always appears in the weak interlayer within 30°–60°,which explains why the failure of the layered rock mass is controlled by the weak interlayer and generally emerges at 45°.The tests results are verified by comparing with theoretical and other published studies.The feasibility of the 3DP soft-hard interbedded rock mass provides broad prospects and application values for 3DP technology in future experimental research.展开更多
The tensile strength at the rock-concrete interface is one of the crucial factors controlling the failure mechanisms of structures,such as concrete gravity dams.Despite the critical importance of the failure mechanism...The tensile strength at the rock-concrete interface is one of the crucial factors controlling the failure mechanisms of structures,such as concrete gravity dams.Despite the critical importance of the failure mechanism and tensile strength of rock-concrete interfaces,understanding of these factors remains very limited.This study investigated the tensile strength and fracturing processes at rock-mortar interfaces subjected to direct and indirect tensile loadings.Digital image correlation(DIC)and acoustic emission(AE)techniques were used to monitor the failure mechanisms of specimens subjected to direct tension and indirect loading(Brazilian tests).The results indicated that the direct tensile strength of the rock-mortar specimens was lower than their indirect tensile strength,with a direct/indirect tensile strength ratio of 65%.DIC strain field data and moment tensor inversions(MTI)of AE events indicated that a significant number of shear microcracks occurred in the specimens subjected to the Brazilian test.The presence of these shear microcracks,which require more energy to break,resulted in a higher tensile strength during the Brazilian tests.In contrast,microcracks were predominantly tensile in specimens subjected to direct tension,leading to a lower tensile strength.Spatiotemporal monitoring of the cracking processes in the rock-mortar interfaces revealed that they show AE precursors before failure under the Brazilian test,whereas they show a minimal number of AE events before failure under direct tension.Due to different microcracking mechanisms,specimens tested under Brazilian tests showed lower roughness with flatter fracture surfaces than those tested under direct tension with jagged and rough fracture surfaces.The results of this study shed light on better understanding the micromechanics of damage in the rock-concrete interfaces for a safer design of engineering structures.展开更多
Using aeolian sand(AS)for goaf backfilling allows coordination of green mining and AS control.Cemented AS backfill(CASB)exhibits brittle fracture.Polypropylene(PP)fibers are good toughening materials.When the tougheni...Using aeolian sand(AS)for goaf backfilling allows coordination of green mining and AS control.Cemented AS backfill(CASB)exhibits brittle fracture.Polypropylene(PP)fibers are good toughening materials.When the toughening effect of fibers is analyzed,their influence on the slurry conveying performance should also be considered.Additionally,cement affects the interactions among the hydration products,fibers,and aggregates.In this study,the effects of cement content(8wt%,9wt%,and 10wt%)and PP fiber length(6,9,and 12 mm)and dosage(0.05wt%,0.1wt%,0.15wt%,0.2wt%,and 0.25wt%)on fluidity and mechanical properties of the fibertoughened CASB(FCASB)were analyzed.The results indicated that with increases in the three aforementioned factors,the slump flow decreased,while the rheological parameters increased.Uniaxial compressive strength(UCS)increased with the increase of cement content and fiber length,and with an increase in fiber dosage,it first increased and then decreased.The strain increased with the increase of fiber dosage and length.The effect of PP fibers became more pronounced with the increase of cement content.Digital image correlation(DIC)test results showed that the addition of fibers can restrain the peeling of blocks and the expansion of fissure,and reduce the stress concentration of the FCASB.Scanning electron microscopy(SEM)test indicated that the functional mechanisms of fibers mainly involved the interactions of fibers with the hydration products and matrix and the spatial distribution of fibers.On the basis of single-factor analysis,the response surface method(RSM)was used to analyze the effects of the three aforementioned factors and their interaction terms on the UCS.The influence surface of the two-factor interaction terms and the three-dimensional scatter plot of the three-factor coupling were established.In conclusion,the response law of the FCASB properties under the effects of cement and PP fibers were obtained,which provides theoretical and engineering guidance for FCASB filling.展开更多
Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress r...Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress relief approach,for indirectly measuring rock stress using optical techniques.The proposed method allows for the acquisition of full-field strain evolution on the borehole’s inner wall before and after disturbance,facilitating the determination of three-dimensional(3D)stress information at multiple points within a single borehole.The study focuses on presenting the method’s theoretical framework,laboratory validation results,and equipment design conception.The theoretical framework comprises three key components:the optical imaging method of the borehole wall,the digital image correlation(DIC)method,and the stress calculation procedure.Laboratory validation tests investigate strain field distribution on the borehole wall under varying stress conditions,with stress results derived from DIC strain data.Remarkably,the optical method demonstrates better measurement accuracy during the unloading stage compared to conventional strain gauge methods.At relatively high stress levels,the optical method demonstrates a relative error of less than 7%and an absolute error within 0.5 MPa.Furthermore,a comparative analysis between the optical method and the conventional contact resistance strain gauge method highlights the optical method’s enhanced accuracy and stability,particularly during the unloading stage.The proposed optical stress measurement device represents a pioneering effort in the application of DIC technology to rock engineering,highlighting its potential to advance stress measurement techniques in the field.展开更多
Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial t...Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial testing system was employed to conduct physical modeling tests on layered rock tunnels with bedding planes of varying dip angles.The influence of structural anisotropy in layered rocks on the micro displacement and strain field of surrounding rocks was analyzed using digital image correlation(DIC)technology.The spatiotemporal evolution of non-uniform deformation of surrounding rocks was investigated,and numerical simulation was performed to verify the experimental results.The findings indicate that the displacement and strain field of the surrounding layered rocks are all maximized at the horizontal bedding planes and decrease linearly with the increasing dip angle.The failure of the layered surrounding rock with different dip angles occurs and extends along the bedding planes.Compressive strain failure occurs after excavation under high horizontal stress.This study provides significant theoretical support for the analysis,prediction,and control of non-uniform deformation of tunnel surrounding rocks.展开更多
Micron-scale crack propagation in red-bed soft rocks under hydraulic action is a common cause of engineering disasters due to damage to the hard rockesoft rockewater interface.Previous studies have not provided a theo...Micron-scale crack propagation in red-bed soft rocks under hydraulic action is a common cause of engineering disasters due to damage to the hard rockesoft rockewater interface.Previous studies have not provided a theoretical analysis of the length,inclination angle,and propagation angle of micron-scale cracks,nor have they established appropriate criteria to describe the crack propagation process.The propagation mechanism of micron-scale cracks in red-bed soft rocks under hydraulic action is not yet fully understood,which makes it challenging to prevent engineering disasters in these types of rocks.To address this issue,we have used the existing generalized maximum tangential stress(GMTS)and generalized maximum energy release rate(GMERR)criteria as the basis and introduced parameters related to micron-scale crack propagation and water action.The GMTS and GMERR criteria for micronscale crack propagation in red-bed soft rocks under hydraulic action(abbreviated as the Wmic-GMTS and Wmic-GMERR criteria,respectively)were established to evaluate micron-scale crack propagation in redbed soft rocks under hydraulic action.The influence of the parameters was also described.The process of micron-scale crack propagation under hydraulic action was monitored using uniaxial compression tests(UCTs)based on digital image correlation(DIC)technology.The study analyzed the length,propagation and inclination angles,and mechanical parameters of micron-scale crack propagation to confirm the reliability of the established criteria.The findings suggest that the Wmic-GMTS and Wmic-GMERR criteria are effective in describing the micron-scale crack propagation in red-bed soft rocks under hydraulic action.This study discusses the mechanism of micron-scale crack propagation and its effect on engineering disasters under hydraulic action.It covers topics such as the internal-external weakening of nano-scale particles,lateral propagation of micron-scale cracks,weakening of the mechanical properties of millimeter-scale soft rocks,and resulting interface damage at the engineering scale.The study provides a theoretical basis for the mechanism of disasters in red-bed soft-rock engineering under hydraulic action.展开更多
To achieve full-surface strain measurement of variable curvature objects,a 360°3D digital image correlation(DIC)system is proposed.The measurement system consists of four double-camera systems,which capture the o...To achieve full-surface strain measurement of variable curvature objects,a 360°3D digital image correlation(DIC)system is proposed.The measurement system consists of four double-camera systems,which capture the object’s entire surface from multiple angles,enabling comprehensive full-surface measurement.To increase the stitching quality,a hierarchical coordinate matching method is proposed.Initially,a 3D rigid body calibration auxiliary block is employed to track motion trajectory,which enables preliminary matching of four 3D-DIC sub-systems.Subsequently,secondary precise matching is performed based on feature points on the test specimen’s surface.Through the hierarchical coordinate matching method,the local 3D coordinate systems of each double-camera system are unified into a global coordinate system,achieving 3D surface reconstruction of the variable curvature cylindrical shell,and error analysis is conducted on the results.Furthermore,axial compression buckling experiment is conducted to measure the displacement and strain fields on the cylindrical shell’s surface.The experimental results are compared with the finite element analysis,validating the accuracy and effectiveness of the proposed multi-camera 3D-DIC measuring system.展开更多
Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media...Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media during their service.Traditionally,observing the in-situ degradation process of refractory materials in complex high-temperature environments has presented challenges.Post-corrosion analysis are commonly employed to assess the slag resistance of refractory materials and understand the corrosion mechanisms.However,these methods often lack information on the process under the conditions of thermal-chemical-mechanical coupling,leading to potential biases in the analysis results.In this work,we developed a non-contact high-temperature machine vision technology by the integrating Digital Image Correlation(DIC)with a high-temperature visualization system to explore the corrosion behavior of Al2O3-SiO2 refractories against molten glass and Al2O3-MgO dry ramming refractories against molten slag at different temperatures.This technology enables realtime monitoring of the 2D or 3D overall strain and average strain curves of the refractory materials and provides continuous feedback on the progressive corrosion of the materials under the coupling conditions of thermal,chemical,and mechanical factors.Therefore,it is an innovative approach for evaluating the service behavior and performance of refractory materials,and is expected to promote the digitization and intelligence of the refractory industry,contributing to the optimization and upgrading of product performance.展开更多
This paper investigated an experimental method for bake hardening properties, a technique for deriving the true stress-strain curves after reaching the maximum load, and a constitutive equation considering both work h...This paper investigated an experimental method for bake hardening properties, a technique for deriving the true stress-strain curves after reaching the maximum load, and a constitutive equation considering both work hardening and bake hardening in order to apply the work hardening occurring in the forming process of parts and the bake hardening induced in the baking process to an automotive crash simulation. A general bake hardening test is that a pre-tensioned specimen is baked and then the same specimen is tensioned again without any further treatment. For a bake hardening test of automotive steel with a tensile strength of 1.2 GPa or more, fractures often occur in curvature section outside, an extensometer due to the difference in the material strength caused by non-uniform bake hardening. This causes a problem in that the bake hardening properties cannot be obtained. In this paper, to prevent curvature fracture, tensile specimens were re-machined in the uniformly deformed region of large specimens subjected to pre-strain, and the re-machined specimens with uniform strength in all regions were re-tensioned. In the bake hardening test of ultra-high strength steels with a tensile strength of 1 GPa or more, shear band fractures occur when the pre-strain is large. This makes it impossible to obtain a true stress-strain curve because there is no uniformly deformed region under a tensile test. To overcome this problem, a new method to calculate the true stress-strain curve by comparing experimental results and the load calculated by the local strain obtained from digital images was developed. This method can be applied not only where shear band deformation occurs, but also in necking deformation, and true stress-strain curves for strains up to 2 - 3 times the uniform elongation can be obtained. A new constitutive equation was developed since an appropriate hardening model is required to simultaneously apply the work hardening and the bake hardening to the simulation. For the newly developed model, the user material subroutine of LS-Dyna was configured, and the simulation was performed on the single hat specimens with pre-strain. When both work hardening and bake hardening were considered, there was a significant increase in absorbed energy compared to when only work hardening was considered. This means that both work hardening and bake hardening should be considered in the car crash simulations to enhance the accuracy of the simulation.展开更多
In order to evaluate the accumulative of tensile strain in the process of fatigue failure, the digital image correlation(DIC) method was utilized to characterize the tensile strain development of asphalt mixtures in...In order to evaluate the accumulative of tensile strain in the process of fatigue failure, the digital image correlation(DIC) method was utilized to characterize the tensile strain development of asphalt mixtures in the indirect tensile(IDT)fatigue test. Three typical hot mix asphalt(HMA) mixtures with varying nominal maximum aggregate sizes were tested at four stress levels. During the tests, a digital camera was mounted to capture the displacement/strain fields on the surface of the specimen by recording the real-time change of speckle position. The results indicate that the vertical deformation curve can barely evaluate the fatigue performance accurately due to the non-negligible local deflection near the loading point. However, based on the analysis of strain fields,the optimal fatigue cracking zone is determined as a 40mm×40mm rectangle in the middle of the specimens. Also, a reasonable fatigue model based on the tensile strain curves calculated by DIC is proposed to predict the fatigue lives of asphalt mixtures.展开更多
The complete stress-strain characteristics of sandstone specimens were investigated in a series of quasistatic monotonic uniaxial compression tests.Strain patterns development during pre-and post-peak behaviours in sp...The complete stress-strain characteristics of sandstone specimens were investigated in a series of quasistatic monotonic uniaxial compression tests.Strain patterns development during pre-and post-peak behaviours in specimens with different aspect ratios was also examined.Peak stress,post-peak portion of stress-strain,brittleness,characteristics of progressive localisation and field strain patterns development were affected at different extents by specimen aspect ratio.Strain patterns of the rocks were obtained by applying three-dimensional(3D) digital image correlation(DIC) technique.Unlike conventional strain measurement using strain gauges attached to specimen,3D DIC allowed not only measuring large strains,but more importantly,mapping the development of field strain throughout the compression test,i.e.in pre-and post-peak regimes.Field strain development in the surface of rock specimen suggests that strain starts localising progressively and develops at a lower rate in pre-peak regime.However,in post-peak regime,strains increase at different rates as local deformations take place at different extents in the vicinity and outside the localised zone.The extent of localised strains together with the rate of strain localisation is associated with the increase in rate of strength degradation.Strain localisation and local inelastic unloading outside the localised zone both feature post-peak regime.展开更多
The strength and failure characteristics of most natural rock mass are influenced by discontinues such as fissures, joints, and weak surfaces. In the present study, the strength and failure behavior of ubiquitous- joi...The strength and failure characteristics of most natural rock mass are influenced by discontinues such as fissures, joints, and weak surfaces. In the present study, the strength and failure behavior of ubiquitous- joint rock-l!ke specimens under uniaxial loading have been investigated by DIC (digital image correlation) and discrete element numerical method (PFC2D). The results are obtained. Firstly, the UCSJ of spec- imens with γ= 15° or 30° shows similar tendency while α goes from 0° to 75°. With γ= 45° or 60°, the UCSJ of specimens increases when α goes from 0° to 30° and decreases after α goes beyond 30°. With γ=75°, the peak UCSJ value is reached when α=0°. The UCSJ value shows an increasing trend when α goes from 60° to 75°. Secondly, the ubiquitous-joint specimens present different failure modes for various levels of α and γ(β-α). Based on the experimental results, the failure mode of ubiquitous-joint specimens can be classified into three categories: stepped path failure, failure through parallel plane, and failure through cross plane.展开更多
The digital speckle correlation method is an important optical metrology for sur- face displacement and strain measurement.With this technique,the whole field deformation in- formation can be obtained by tracking the ...The digital speckle correlation method is an important optical metrology for sur- face displacement and strain measurement.With this technique,the whole field deformation in- formation can be obtained by tracking the geometric points on the speckle images based on a correlation-matching search technique.However,general search techniques suffer from great com- putational complexity in the processing of speckle images with large deformation and the large random errors in the processing of images of bad quality.In this paper,an advanced approach based on genetic algorithms (GA) for correlation-matching search is developed.Benefiting from the abilities of global optimum and parallelism searching of GA,this new approach can complete the correlation-matching search with less computational consumption and at high accuracy.Two experimental results from the simulated speckle images have proved the efficiency of the new approach.展开更多
In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic ...In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic emission technique was used to monitor the acoustic signal characteristics of composite rock specimens during the entire loading process. At the same time, an optical non-contact 3 D digital image correlation technique was used to study the evolution of axial strain field and the maximal strain field before and after the peak strength at different stress levels during the loading process. The effect of bedding plane inclination on the deformation and strength during uniaxial loading was analyzed. The methods of solving the elastic constants of hard and weak rock were described. The damage evolution process, deformation and failure mechanism, and failure mode during uniaxial loading were fully determined. The experimental results show that the θ = 0?–45?specimens had obvious plastic deformation during loading, and the brittleness of the θ = 60?–90?specimens gradually increased during the loading process. When the anisotropic angle θincreased from 0?to 90?, the peak strength, peak strain,and apparent elastic modulus all decreased initially and then increased. The failure mode of the composite rock specimen during uniaxial loading can be divided into three categories:tensile fracture across the discontinuities(θ = 0?–30?), slid-ing failure along the discontinuities(θ = 45?–75?), and tensile-split along the discontinuities(θ = 90?). The axial strain of the weak and hard rock layers in the composite rock specimen during the loading process was significantly different from that of the θ = 0?–45?specimens and was almost the same as that of the θ = 60?–90?specimens. As for the strain localization highlighted in the maximum principal strain field, the θ = 0?–30?specimens appeared in the rock matrix approximately parallel to the loading direction,while in the θ = 45?–90?specimens it appeared at the hard and weak rock layer interface.展开更多
Beetle wings are very specialized flight organs consisting of the veins and membranes.Therefore it is necessary from a bionic view to investigate the material properties of a beetle wing experimentally.In the present ...Beetle wings are very specialized flight organs consisting of the veins and membranes.Therefore it is necessary from a bionic view to investigate the material properties of a beetle wing experimentally.In the present study,we have used a Digital Image Correlation (DIC) technique to measure the elastic modulus of a beetle wing membrane.Specimens were prepared by carefully cutting a beetle hind wing into 3.0 mm by 7.0 mm segments (the gage length was 5 mm).We used a scanning electron microscope for a precise measurement of the thickness of the beetle wing membrane.The specimen was attached to a designed fixture to induce a uniform displacement by means of a micromanipulator.We used an ARAMISTM system based on the digital image correlation technique to measure the corresponding displacement of a specimen.The thickness of the beetle wing varied at different points of the membrane.The elastic modulus differed in relation to the membrane arrangement showing a structural anisotropy;the elastic modulus in the chordwise direction is approximately 2.65 GPa,which is three times larger than the elastic modulus in the spanwise direction of 0.84 GPa.As a result,the digital image correlation-based ARAMIS system was suc- cessfully used to measure the elastic modulus of a beetle wing.In addition to membrane's elastic modulus,we considered the Poisson's ratio of the membrane and measured the elastic modulus of a vein using an Instron universal tensile machine.The result reveals the Poisson's ratio is nearly zero and the elastic modulus of a vein is about 11 GPa.展开更多
The deformation field around sub-cracks was calculated using the digital speckle correlation method. First, the uni-axial compression tests on sandstone samples containing a pre- fabricated fracture were made. Photomi...The deformation field around sub-cracks was calculated using the digital speckle correlation method. First, the uni-axial compression tests on sandstone samples containing a pre- fabricated fracture were made. Photomicrographs showing the characteristics of the sub-crack development were taken using a scanning electron microscope (SEM). From these photomicrographs, the real-time images showing the initiation, growth and coalescence of sub-cracks and micro-cracks in the sandstone specimens were obtained and the effects of loading level as well as grain boundaries on the development of cracks were analyzed. Second, the intensity images of the sandstone specimen surface were captured from the observations of the SEM corresponding to different loading levels. Then correlation computation was carried out for the sequential pairs of intensity images to evaluate the displacement components, as well as the strain field. The results show that the deformation varies in different areas separated by sub-cracks during rock damage processes.展开更多
文摘Rock fracture mechanics and accurate characterization of rock fracture are crucial for understanding a variety of phenomena interested in geological engineering and geoscience.These phenomena range from very large-scale asymmetrical fault structures to the scale of engineering projects and laboratory-scale rock fracture tests.Comprehensive study can involve mechanical modeling,site or post-mortem investigations,and inspection on the point cloud of the source locations in the form of earthquake,microseismicity,or acoustic emission.This study presents a comprehensive data analysis on characterizing the forming of the asymmetrical damage zone around a laboratory mixed-mode rock fracture.We substantiate the presence of asymmetrical damage through qualitative analysis and demonstrate that measurement uncertainties cannot solely explain the observed asymmetry.The implications of this demonstration can be manifold.On a larger scale,it solidifies a mechanical model used for explaining the contribution of aseismic mechanisms to asymmetrical fault structures.On a laboratory scale,it exemplifies an alternative approach to understanding the observational difference between the source location and the in situ or post-mortem inspection on the rock fracture path.The mechanical model and the data analysis can be informative to the interpretations of other engineering practices as well,but may face different types of challenges.
文摘In spacecraft electronic devices,the deformation of solder balls within ball grid array(BGA)packages poses a significant risk of system failure.Therefore,accurately measuring the mechanical behavior of solder balls is crucial for ensuring the safety and reliability of spacecraft.Although finite element simulations have been extensively used to study solder ball deformation,there is a significant lack of experimental validation,particularly under thermal cycling conditions.This is due to the challenges in accurately measuring the internal deformations of solder balls and eliminating the rigid body displacement introduced during ex-situ thermal cycling tests.In this work,an ex-situ three-dimensional deformation measurement method using X-ray computed tomography(CT)and digital volume correlation(DVC)is proposed to overcome these obstacles.By incorporating the layer-wise reliability-guided displacement tracking(LW-RGDT)DVC with a singular value decomposition(SVD)method,this method enables accurate assessment of solder ball mechanical behavior in BGA packages without the influence of rigid body displacement.Experimental results reveal that BGA structures exhibit progressive convex deformation with increased thermal cycling,particularly in peripheral solder balls.This method provides a reliable and effective tool for assessing internal deformations in electronic packages under ex-situ conditions,which is crucial for their design optimization and lifespan predictions.
基金financially supported by the National Natural Science Foundation of China (No.51934003)the Major Science and Technology Special Project of Yunnan Province,China(Nos.202102AF080001 and 202102AG050024)。
文摘The anisotropy induced by rock bedding structures is usually manifested in the mechanical behaviors and failure modes of rocks.Brazilian tests are conducted for seven groups of shale specimens featuring different bedding angles. Acoustic emission (AE) and digital image correlation (DIC) technologies are used to monitor the in-situ failure of the specimens. Furthermore, the crack morphology of damaged samples is observed through scanning electron microscopy (SEM). Results reveal the structural dependence on the tensile mechanical behavior of shales. The shale disk exhibits compression in the early stage of the experiment with varying locations and durations. The location of the compression area moves downward and gradually disappears when the bedding angle increases. The macroscopic failure is well characterized by AE event location results, and the dominant frequency distribution is related to the bedding angle. The b-value is found to be stress-dependent.The crack turning angle between layers and the number of cracks crossing the bedding both increase with the bedding angle, indicating competition between crack propagations. SEM results revealed that the failure modes of the samples can be classified into three types:tensile failure along beddings with shear failure of the matrix, ladder shear failure along beddings with tensile failure of the matrix, and shear failure along multiple beddings with tensile failure of the matrix.
基金supported by the Building Fund for the Academic Innovation Team of Shantou University (CN)(NTF21017)the Special Fund for Science and Technology of Guangdong Province in2021 (STKJ2021181)the National Natural Science Foundation of China (Grant nos.12272394)
文摘The mesomechanics of geotechnical materials are closely related to the macromechanical properties,especially the mesoscale evolution of shear bands,which is helpful for understanding the failure mechanism of geotechnical materials.However,there is lack of effective quantitative analysis method for the complex evolution mechanism of threedimensional shear bands.In this work,we used X-ray computed tomography(CT)to reconstruct volume images and used the digital volume correlation(DVC)method to calculate the three-dimensional strain fields of granite residual soil samples at different loading stages.The trend of the failure surface of the shear bands was obtained by the planar fitting method,and the connectivity index was constructed according to the projection characteristics of the shear bands on the failure trend surface.The results support the following findings:the connectivity index of the shear band increases rapidly and then slowly with increasing axial strain,which is characterized by a near'S'curve.As the stress reaches the peak value,the connectivity index of the shear bands almost exceeds 0.7.The contribution of the new shear band volume to the connectivity of the shear bands becomes increasingly small with increasing axial loading.Affected by quartz grains and stress at the initial stage,the dip angle gradually and finally approaches the included angle of the maximum shear stress from the discrete state with increasing axial loading.The tendency and dip angle of the resulting shear bands are dynamic,and the tendency slightly deflects with increasing loading.
基金the support of the National Natural Science Foundation of China(Grant Nos.42207199,52179113,42272333)Zhejiang Postdoctoral Scientific Research Project(Grant Nos.ZJ2022155,ZJ2022156)。
文摘Three-dimensional(3D)printing technology is increasingly used in experimental research of geotechnical engineering.Compared to other materials,3D layer-by-layer printing specimens are extremely similar to the inherent properties of natural layered rock masses.In this paper,soft-hard interbedded rock masses with different dip angles were prepared based on 3D printing(3DP)sand core technology.Uniaxial compression creep tests were conducted to investigate its anisotropic creep behavior based on digital imaging correlation(DIC)technology.The results show that the anisotropic creep behavior of the 3DP soft-hard interbedded rock mass is mainly affected by the dip angles of the weak interlayer when the stress is at low levels.As the stress level increases,the effect of creep stress on its creep anisotropy increases significantly,and the dip angle is no longer the main factor.The minimum value of the long-term strength and creep failure strength always appears in the weak interlayer within 30°–60°,which explains why the failure of the layered rock mass is controlled by the weak interlayer and generally emerges at 45°.The tests results are verified by comparing with theoretical and other published studies.The feasibility of the 3DP soft-hard interbedded rock mass provides broad prospects and application values for 3DP technology in future experimental research.
文摘The tensile strength at the rock-concrete interface is one of the crucial factors controlling the failure mechanisms of structures,such as concrete gravity dams.Despite the critical importance of the failure mechanism and tensile strength of rock-concrete interfaces,understanding of these factors remains very limited.This study investigated the tensile strength and fracturing processes at rock-mortar interfaces subjected to direct and indirect tensile loadings.Digital image correlation(DIC)and acoustic emission(AE)techniques were used to monitor the failure mechanisms of specimens subjected to direct tension and indirect loading(Brazilian tests).The results indicated that the direct tensile strength of the rock-mortar specimens was lower than their indirect tensile strength,with a direct/indirect tensile strength ratio of 65%.DIC strain field data and moment tensor inversions(MTI)of AE events indicated that a significant number of shear microcracks occurred in the specimens subjected to the Brazilian test.The presence of these shear microcracks,which require more energy to break,resulted in a higher tensile strength during the Brazilian tests.In contrast,microcracks were predominantly tensile in specimens subjected to direct tension,leading to a lower tensile strength.Spatiotemporal monitoring of the cracking processes in the rock-mortar interfaces revealed that they show AE precursors before failure under the Brazilian test,whereas they show a minimal number of AE events before failure under direct tension.Due to different microcracking mechanisms,specimens tested under Brazilian tests showed lower roughness with flatter fracture surfaces than those tested under direct tension with jagged and rough fracture surfaces.The results of this study shed light on better understanding the micromechanics of damage in the rock-concrete interfaces for a safer design of engineering structures.
基金financially supported by the National Natural Science Foundation of China(No.52174095)the Top Innovative Talents Cultivation Fund for Doctoral Postgraduates(No.BBJ2023054).
文摘Using aeolian sand(AS)for goaf backfilling allows coordination of green mining and AS control.Cemented AS backfill(CASB)exhibits brittle fracture.Polypropylene(PP)fibers are good toughening materials.When the toughening effect of fibers is analyzed,their influence on the slurry conveying performance should also be considered.Additionally,cement affects the interactions among the hydration products,fibers,and aggregates.In this study,the effects of cement content(8wt%,9wt%,and 10wt%)and PP fiber length(6,9,and 12 mm)and dosage(0.05wt%,0.1wt%,0.15wt%,0.2wt%,and 0.25wt%)on fluidity and mechanical properties of the fibertoughened CASB(FCASB)were analyzed.The results indicated that with increases in the three aforementioned factors,the slump flow decreased,while the rheological parameters increased.Uniaxial compressive strength(UCS)increased with the increase of cement content and fiber length,and with an increase in fiber dosage,it first increased and then decreased.The strain increased with the increase of fiber dosage and length.The effect of PP fibers became more pronounced with the increase of cement content.Digital image correlation(DIC)test results showed that the addition of fibers can restrain the peeling of blocks and the expansion of fissure,and reduce the stress concentration of the FCASB.Scanning electron microscopy(SEM)test indicated that the functional mechanisms of fibers mainly involved the interactions of fibers with the hydration products and matrix and the spatial distribution of fibers.On the basis of single-factor analysis,the response surface method(RSM)was used to analyze the effects of the three aforementioned factors and their interaction terms on the UCS.The influence surface of the two-factor interaction terms and the three-dimensional scatter plot of the three-factor coupling were established.In conclusion,the response law of the FCASB properties under the effects of cement and PP fibers were obtained,which provides theoretical and engineering guidance for FCASB filling.
基金funding support from the National Natural Science Foundation of China(Grant Nos.52125903 and 52209149).
文摘Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress relief approach,for indirectly measuring rock stress using optical techniques.The proposed method allows for the acquisition of full-field strain evolution on the borehole’s inner wall before and after disturbance,facilitating the determination of three-dimensional(3D)stress information at multiple points within a single borehole.The study focuses on presenting the method’s theoretical framework,laboratory validation results,and equipment design conception.The theoretical framework comprises three key components:the optical imaging method of the borehole wall,the digital image correlation(DIC)method,and the stress calculation procedure.Laboratory validation tests investigate strain field distribution on the borehole wall under varying stress conditions,with stress results derived from DIC strain data.Remarkably,the optical method demonstrates better measurement accuracy during the unloading stage compared to conventional strain gauge methods.At relatively high stress levels,the optical method demonstrates a relative error of less than 7%and an absolute error within 0.5 MPa.Furthermore,a comparative analysis between the optical method and the conventional contact resistance strain gauge method highlights the optical method’s enhanced accuracy and stability,particularly during the unloading stage.The proposed optical stress measurement device represents a pioneering effort in the application of DIC technology to rock engineering,highlighting its potential to advance stress measurement techniques in the field.
基金support from the National Natural Science Foundation of China (Grant No.42207199)Zhejiang Provincial Postdoctoral Science Foundation (Grant Nos.ZJ2022155 and ZJ2022156).
文摘Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial testing system was employed to conduct physical modeling tests on layered rock tunnels with bedding planes of varying dip angles.The influence of structural anisotropy in layered rocks on the micro displacement and strain field of surrounding rocks was analyzed using digital image correlation(DIC)technology.The spatiotemporal evolution of non-uniform deformation of surrounding rocks was investigated,and numerical simulation was performed to verify the experimental results.The findings indicate that the displacement and strain field of the surrounding layered rocks are all maximized at the horizontal bedding planes and decrease linearly with the increasing dip angle.The failure of the layered surrounding rock with different dip angles occurs and extends along the bedding planes.Compressive strain failure occurs after excavation under high horizontal stress.This study provides significant theoretical support for the analysis,prediction,and control of non-uniform deformation of tunnel surrounding rocks.
基金funded by the National Natural Science Foundation of China(NSFC)(Grant Nos.42293354,42293351,and 42277131).
文摘Micron-scale crack propagation in red-bed soft rocks under hydraulic action is a common cause of engineering disasters due to damage to the hard rockesoft rockewater interface.Previous studies have not provided a theoretical analysis of the length,inclination angle,and propagation angle of micron-scale cracks,nor have they established appropriate criteria to describe the crack propagation process.The propagation mechanism of micron-scale cracks in red-bed soft rocks under hydraulic action is not yet fully understood,which makes it challenging to prevent engineering disasters in these types of rocks.To address this issue,we have used the existing generalized maximum tangential stress(GMTS)and generalized maximum energy release rate(GMERR)criteria as the basis and introduced parameters related to micron-scale crack propagation and water action.The GMTS and GMERR criteria for micronscale crack propagation in red-bed soft rocks under hydraulic action(abbreviated as the Wmic-GMTS and Wmic-GMERR criteria,respectively)were established to evaluate micron-scale crack propagation in redbed soft rocks under hydraulic action.The influence of the parameters was also described.The process of micron-scale crack propagation under hydraulic action was monitored using uniaxial compression tests(UCTs)based on digital image correlation(DIC)technology.The study analyzed the length,propagation and inclination angles,and mechanical parameters of micron-scale crack propagation to confirm the reliability of the established criteria.The findings suggest that the Wmic-GMTS and Wmic-GMERR criteria are effective in describing the micron-scale crack propagation in red-bed soft rocks under hydraulic action.This study discusses the mechanism of micron-scale crack propagation and its effect on engineering disasters under hydraulic action.It covers topics such as the internal-external weakening of nano-scale particles,lateral propagation of micron-scale cracks,weakening of the mechanical properties of millimeter-scale soft rocks,and resulting interface damage at the engineering scale.The study provides a theoretical basis for the mechanism of disasters in red-bed soft-rock engineering under hydraulic action.
基金funded by the National Natural Science Foundations of China(Nos.12272176,U2037603).
文摘To achieve full-surface strain measurement of variable curvature objects,a 360°3D digital image correlation(DIC)system is proposed.The measurement system consists of four double-camera systems,which capture the object’s entire surface from multiple angles,enabling comprehensive full-surface measurement.To increase the stitching quality,a hierarchical coordinate matching method is proposed.Initially,a 3D rigid body calibration auxiliary block is employed to track motion trajectory,which enables preliminary matching of four 3D-DIC sub-systems.Subsequently,secondary precise matching is performed based on feature points on the test specimen’s surface.Through the hierarchical coordinate matching method,the local 3D coordinate systems of each double-camera system are unified into a global coordinate system,achieving 3D surface reconstruction of the variable curvature cylindrical shell,and error analysis is conducted on the results.Furthermore,axial compression buckling experiment is conducted to measure the displacement and strain fields on the cylindrical shell’s surface.The experimental results are compared with the finite element analysis,validating the accuracy and effectiveness of the proposed multi-camera 3D-DIC measuring system.
基金supported by the National Natural Science Foundation of China(52272022)Key Program of Natural Science Foundation of Hubei Province(2021CFA071).
文摘Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media during their service.Traditionally,observing the in-situ degradation process of refractory materials in complex high-temperature environments has presented challenges.Post-corrosion analysis are commonly employed to assess the slag resistance of refractory materials and understand the corrosion mechanisms.However,these methods often lack information on the process under the conditions of thermal-chemical-mechanical coupling,leading to potential biases in the analysis results.In this work,we developed a non-contact high-temperature machine vision technology by the integrating Digital Image Correlation(DIC)with a high-temperature visualization system to explore the corrosion behavior of Al2O3-SiO2 refractories against molten glass and Al2O3-MgO dry ramming refractories against molten slag at different temperatures.This technology enables realtime monitoring of the 2D or 3D overall strain and average strain curves of the refractory materials and provides continuous feedback on the progressive corrosion of the materials under the coupling conditions of thermal,chemical,and mechanical factors.Therefore,it is an innovative approach for evaluating the service behavior and performance of refractory materials,and is expected to promote the digitization and intelligence of the refractory industry,contributing to the optimization and upgrading of product performance.
文摘This paper investigated an experimental method for bake hardening properties, a technique for deriving the true stress-strain curves after reaching the maximum load, and a constitutive equation considering both work hardening and bake hardening in order to apply the work hardening occurring in the forming process of parts and the bake hardening induced in the baking process to an automotive crash simulation. A general bake hardening test is that a pre-tensioned specimen is baked and then the same specimen is tensioned again without any further treatment. For a bake hardening test of automotive steel with a tensile strength of 1.2 GPa or more, fractures often occur in curvature section outside, an extensometer due to the difference in the material strength caused by non-uniform bake hardening. This causes a problem in that the bake hardening properties cannot be obtained. In this paper, to prevent curvature fracture, tensile specimens were re-machined in the uniformly deformed region of large specimens subjected to pre-strain, and the re-machined specimens with uniform strength in all regions were re-tensioned. In the bake hardening test of ultra-high strength steels with a tensile strength of 1 GPa or more, shear band fractures occur when the pre-strain is large. This makes it impossible to obtain a true stress-strain curve because there is no uniformly deformed region under a tensile test. To overcome this problem, a new method to calculate the true stress-strain curve by comparing experimental results and the load calculated by the local strain obtained from digital images was developed. This method can be applied not only where shear band deformation occurs, but also in necking deformation, and true stress-strain curves for strains up to 2 - 3 times the uniform elongation can be obtained. A new constitutive equation was developed since an appropriate hardening model is required to simultaneously apply the work hardening and the bake hardening to the simulation. For the newly developed model, the user material subroutine of LS-Dyna was configured, and the simulation was performed on the single hat specimens with pre-strain. When both work hardening and bake hardening were considered, there was a significant increase in absorbed energy compared to when only work hardening was considered. This means that both work hardening and bake hardening should be considered in the car crash simulations to enhance the accuracy of the simulation.
文摘In order to evaluate the accumulative of tensile strain in the process of fatigue failure, the digital image correlation(DIC) method was utilized to characterize the tensile strain development of asphalt mixtures in the indirect tensile(IDT)fatigue test. Three typical hot mix asphalt(HMA) mixtures with varying nominal maximum aggregate sizes were tested at four stress levels. During the tests, a digital camera was mounted to capture the displacement/strain fields on the surface of the specimen by recording the real-time change of speckle position. The results indicate that the vertical deformation curve can barely evaluate the fatigue performance accurately due to the non-negligible local deflection near the loading point. However, based on the analysis of strain fields,the optimal fatigue cracking zone is determined as a 40mm×40mm rectangle in the middle of the specimens. Also, a reasonable fatigue model based on the tensile strain curves calculated by DIC is proposed to predict the fatigue lives of asphalt mixtures.
基金supported by the Deep Exploration Technologies Cooperative Research Centre whose activities are funded by the Australian Government's Cooperative Research Centre Programme.This is DET CRC Document 2017/954
文摘The complete stress-strain characteristics of sandstone specimens were investigated in a series of quasistatic monotonic uniaxial compression tests.Strain patterns development during pre-and post-peak behaviours in specimens with different aspect ratios was also examined.Peak stress,post-peak portion of stress-strain,brittleness,characteristics of progressive localisation and field strain patterns development were affected at different extents by specimen aspect ratio.Strain patterns of the rocks were obtained by applying three-dimensional(3D) digital image correlation(DIC) technique.Unlike conventional strain measurement using strain gauges attached to specimen,3D DIC allowed not only measuring large strains,but more importantly,mapping the development of field strain throughout the compression test,i.e.in pre-and post-peak regimes.Field strain development in the surface of rock specimen suggests that strain starts localising progressively and develops at a lower rate in pre-peak regime.However,in post-peak regime,strains increase at different rates as local deformations take place at different extents in the vicinity and outside the localised zone.The extent of localised strains together with the rate of strain localisation is associated with the increase in rate of strength degradation.Strain localisation and local inelastic unloading outside the localised zone both feature post-peak regime.
基金funding from Project (Nos.51474249 and 51404179) supported by National Natural Science Foundation of ChinaProject Supported by Innovation Driven Plan of Central South University of China (No.2016CX019)Project (No. SKLGDUEK1405) funded by the Open Projects of State Key Laboratory for Geo-mechanics and Deep Underground Engineering of China University of Mining and Technology,in China
文摘The strength and failure characteristics of most natural rock mass are influenced by discontinues such as fissures, joints, and weak surfaces. In the present study, the strength and failure behavior of ubiquitous- joint rock-l!ke specimens under uniaxial loading have been investigated by DIC (digital image correlation) and discrete element numerical method (PFC2D). The results are obtained. Firstly, the UCSJ of spec- imens with γ= 15° or 30° shows similar tendency while α goes from 0° to 75°. With γ= 45° or 60°, the UCSJ of specimens increases when α goes from 0° to 30° and decreases after α goes beyond 30°. With γ=75°, the peak UCSJ value is reached when α=0°. The UCSJ value shows an increasing trend when α goes from 60° to 75°. Secondly, the ubiquitous-joint specimens present different failure modes for various levels of α and γ(β-α). Based on the experimental results, the failure mode of ubiquitous-joint specimens can be classified into three categories: stepped path failure, failure through parallel plane, and failure through cross plane.
基金Project supported by the National Natural Science Foundation of China(No.19772033)the Research Innovation Fund of Tsinghua University for Ph.D.Candidates(No.092410048).
文摘The digital speckle correlation method is an important optical metrology for sur- face displacement and strain measurement.With this technique,the whole field deformation in- formation can be obtained by tracking the geometric points on the speckle images based on a correlation-matching search technique.However,general search techniques suffer from great com- putational complexity in the processing of speckle images with large deformation and the large random errors in the processing of images of bad quality.In this paper,an advanced approach based on genetic algorithms (GA) for correlation-matching search is developed.Benefiting from the abilities of global optimum and parallelism searching of GA,this new approach can complete the correlation-matching search with less computational consumption and at high accuracy.Two experimental results from the simulated speckle images have proved the efficiency of the new approach.
基金supported by the National Basic Research 973 Program of China (Grant 2014CB046905)the Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars (Grant BK20150005)+1 种基金the Fundamental Research Funds for the Central Universities (China University of Mining and Technology) (Grant 2014XT03)the innovation research project for academic graduate of Jiangsu Province (Grant KYLX16_0536)
文摘In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic emission technique was used to monitor the acoustic signal characteristics of composite rock specimens during the entire loading process. At the same time, an optical non-contact 3 D digital image correlation technique was used to study the evolution of axial strain field and the maximal strain field before and after the peak strength at different stress levels during the loading process. The effect of bedding plane inclination on the deformation and strength during uniaxial loading was analyzed. The methods of solving the elastic constants of hard and weak rock were described. The damage evolution process, deformation and failure mechanism, and failure mode during uniaxial loading were fully determined. The experimental results show that the θ = 0?–45?specimens had obvious plastic deformation during loading, and the brittleness of the θ = 60?–90?specimens gradually increased during the loading process. When the anisotropic angle θincreased from 0?to 90?, the peak strength, peak strain,and apparent elastic modulus all decreased initially and then increased. The failure mode of the composite rock specimen during uniaxial loading can be divided into three categories:tensile fracture across the discontinuities(θ = 0?–30?), slid-ing failure along the discontinuities(θ = 45?–75?), and tensile-split along the discontinuities(θ = 90?). The axial strain of the weak and hard rock layers in the composite rock specimen during the loading process was significantly different from that of the θ = 0?–45?specimens and was almost the same as that of the θ = 60?–90?specimens. As for the strain localization highlighted in the maximum principal strain field, the θ = 0?–30?specimens appeared in the rock matrix approximately parallel to the loading direction,while in the θ = 45?–90?specimens it appeared at the hard and weak rock layer interface.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)the Ministry of Education, Science and Technology (Grant number: 2009-0083068)
文摘Beetle wings are very specialized flight organs consisting of the veins and membranes.Therefore it is necessary from a bionic view to investigate the material properties of a beetle wing experimentally.In the present study,we have used a Digital Image Correlation (DIC) technique to measure the elastic modulus of a beetle wing membrane.Specimens were prepared by carefully cutting a beetle hind wing into 3.0 mm by 7.0 mm segments (the gage length was 5 mm).We used a scanning electron microscope for a precise measurement of the thickness of the beetle wing membrane.The specimen was attached to a designed fixture to induce a uniform displacement by means of a micromanipulator.We used an ARAMISTM system based on the digital image correlation technique to measure the corresponding displacement of a specimen.The thickness of the beetle wing varied at different points of the membrane.The elastic modulus differed in relation to the membrane arrangement showing a structural anisotropy;the elastic modulus in the chordwise direction is approximately 2.65 GPa,which is three times larger than the elastic modulus in the spanwise direction of 0.84 GPa.As a result,the digital image correlation-based ARAMIS system was suc- cessfully used to measure the elastic modulus of a beetle wing.In addition to membrane's elastic modulus,we considered the Poisson's ratio of the membrane and measured the elastic modulus of a vein using an Instron universal tensile machine.The result reveals the Poisson's ratio is nearly zero and the elastic modulus of a vein is about 11 GPa.
基金supported by the NaturalScience Foundation of China(contract no.40821062)
文摘The deformation field around sub-cracks was calculated using the digital speckle correlation method. First, the uni-axial compression tests on sandstone samples containing a pre- fabricated fracture were made. Photomicrographs showing the characteristics of the sub-crack development were taken using a scanning electron microscope (SEM). From these photomicrographs, the real-time images showing the initiation, growth and coalescence of sub-cracks and micro-cracks in the sandstone specimens were obtained and the effects of loading level as well as grain boundaries on the development of cracks were analyzed. Second, the intensity images of the sandstone specimen surface were captured from the observations of the SEM corresponding to different loading levels. Then correlation computation was carried out for the sequential pairs of intensity images to evaluate the displacement components, as well as the strain field. The results show that the deformation varies in different areas separated by sub-cracks during rock damage processes.