High Mountain Asia(HMA),recognized as a third pole,needs regular and intense studies as it is susceptible to climate change.An accurate and high-resolution Digital Elevation Model(DEM)for this region enables us to ana...High Mountain Asia(HMA),recognized as a third pole,needs regular and intense studies as it is susceptible to climate change.An accurate and high-resolution Digital Elevation Model(DEM)for this region enables us to analyze it in a 3D environment and understand its intricate role as the Water Tower of Asia.The science teams of NASA realized an 8-m DEM using satellite stereo imagery for HMA,termed HMA 8-m DEM.In this research,we assessed the vertical accuracy of HMA 8-m DEM using reference elevations from ICESat-2 geolocated photons at three test sites of varied topography and land covers.Inferences were made from statistical quantifiers and elevation profiles.For the world’s highest mountain,Mount Everest,and its surroundings,Root Mean Squared Error(RMSE)and Mean Absolute Error(MAE)resulted in 1.94 m and 1.66 m,respectively;however,a uniform positive bias observed in the elevation profiles indicates the seasonal snow cover change will dent the accurate estimation of the elevation in this sort of test sites.The second test site containing gentle slopes with forest patches has exhibited the Digital Surface Model(DSM)features with RMSE and MAE of 0.58 m and 0.52 m,respectively.The third test site,situated in the Zanda County of the Qinghai-Tibet,is a relatively flat terrain bed,mostly bare earth with sudden river cuts,and has minimal errors with RMSE and MAE of 0.32 m and 0.29 m,respectively,and with a negligible bias.Additionally,in one more test site,the feasibility of detecting the glacial lakes was tested,which resulted in exhibiting a flat surface over the surface of the lakes,indicating the potential of HMA 8-m DEM for deriving the hydrological parameters.The results accrued in this investigation confirm that the HMA 8-m DEM has the best vertical accuracy and should be of high use for analyzing natural hazards and monitoring glacier surfaces.展开更多
Water erosion is a serious problem that leads to soil degradation,loss,and the destruction of structures.Assessing the risk of erosion and determining the affected areas has become crucial in order to understand the m...Water erosion is a serious problem that leads to soil degradation,loss,and the destruction of structures.Assessing the risk of erosion and determining the affected areas has become crucial in order to understand the main factors influencing its evolution and to minimize its impacts.This study focuses on evaluating the risk of erosion in the Assif el mal watershed,which is located in the High Atlas Mountains.The Erosion Potential Model(EPM)is used to estimate soil losses depending on various parameters such as lithology,hydrology,topography,and morphometry.Geographic information systems and remote sensing techniques are employed to map areas with high erosive potential and their relationship with the distribution of factors involved.Different digital elevation models are also used in this study to highlight the impact of data quality on the accuracy of the results.The findings reveal that approximately 59%of the total area in the Assif el mal basin has low to very low potential for soil losses,while 22%is moderately affected and 19.9%is at high to very high risk.It is therefore crucial to implement soil conservation measures to mitigate and prevent erosion risks.展开更多
The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo m...The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo mapping camera equipped on lunar orbiter before launching.In this work,an imaging simulation method consid-ering the attitude jitter is presented.The impact analysis of different attitude jitter on terrain undulation is conduct-ed by simulating jitter at three attitude angles,respectively.The proposed simulation method is based on the rigor-ous sensor model,using the lunar digital elevation model(DEM)and orthoimage as reference data.The orbit and attitude of the lunar stereo mapping camera are simulated while considering the attitude jitter.Two-dimensional simulated stereo images are generated according to the position and attitude of the orbiter in a given orbit.Experi-mental analyses were conducted by the DEM with the simulated stereo image.The simulation imaging results demonstrate that the proposed method can ensure imaging efficiency without losing the accuracy of topographic mapping.The effect of attitude jitter on the stereo mapping accuracy of the simulated images was analyzed through a DEM comparison.展开更多
In recent years,there has been a significant acceleration in the thinning,calving and retreat of the Pine Island Ice Shelf(PIIS).The basal channels,results of enhanced basal melting,have the potential to significantly...In recent years,there has been a significant acceleration in the thinning,calving and retreat of the Pine Island Ice Shelf(PIIS).The basal channels,results of enhanced basal melting,have the potential to significantly impact the stability of the PIIS.In this study,we used a variety of remote sensing data,including Landsat,REMA DEM,ICESat-1 and ICESat-2 satellite altimetry observations,and Ice Bridge airborne measurements,to study the spatiotemporal changes in the basal channels from 2003 to 2020 and basal melt rate from 2010 to 2017 of the PIIS under the Eulerian framework.We found that the basal channels are highly developed in the PIIS,with a total length exceeding 450 km.Most of the basal channels are ocean-sourced or groundingline-sourced basal channels,caused by the rapid melting under the ice shelf or near the groundingline.A raised seabed prevented warm water intrusion into the eastern branch of the PIIS,resulting in a lower basal melt rate in that area.In contrast,a deepsea trough facilitates warm seawater into the mainstream and the western branch of the PIIS,resulting in a higher basal melt rate in the main-stream,and the surface elevation changes above the basal channels of the mainstream and western branch are more significant.The El Ni?o event in 2015–2016 possibly slowed down the basal melting of the PIIS by modulating wind field,surface sea temperature and depth seawater temperature.Ocean and atmospheric changes were driven by El Ni?o,which can further explain and confirm the changes in the basal melting of the PIIS.展开更多
Boundary extraction of watershed is an important step in forest landscape research. The boundary of the upriver wa-tershed of the Hunhe River in the sub-alpine Qingyuan County of eastern Liaoning Province, China was e...Boundary extraction of watershed is an important step in forest landscape research. The boundary of the upriver wa-tershed of the Hunhe River in the sub-alpine Qingyuan County of eastern Liaoning Province, China was extracted by digital elevation modeling (DEM) data in ArcInfo8.1. Remote sensing image of the corresponding region was applied to help modify its copy according to Enhanced Thematic Mapper (ETM) image抯 profuse geomorphological structure information. Both the DEM-dependent boundary and modified copy were overlapped with county map and drainage network map to visually check the effects of result. Overlap of county map suggested a nice extraction of the boundary line since the two layers matched precisely, which indicated the DEM-dependent boundary by program was effective and precise. Further upload of drainage network showed discrepancies between the boundary and the drainage network. Altogether, there were three sections of the extraction result that needed to correct. Compared with this extraction boundary, the modified boundary had a better match to the drainage network as well as to the county map. Comprehensive analysis demonstrated that the program extraction has generally fine precision in position and excels the digitized result by hand. The errors of the DEM-dependant extraction are due to the fact that it is difficult for program to recognize sections of complex landform especially altered by human activities, but these errors are discernable and adjustable because the spatial resolution of ETM image is less than that of DEM. This study result proved that application of remote sensing information could help obtain better result when DEM method is used in extraction of watershed boundary.展开更多
In China′s Loess Plateau area, gully head is the most active zone of a drainage system in gully areas. The differentiation of loess gully head follows geospatial patterns and reflects the process of the loess landfor...In China′s Loess Plateau area, gully head is the most active zone of a drainage system in gully areas. The differentiation of loess gully head follows geospatial patterns and reflects the process of the loess landform development and evolution of its drainage system to some extent. In this study, the geomorphic meaning, basic characteristics, morphological structure and the basic types of loess gully heads were systematically analysed. Then, the loess gully head′s conceptual model was established, and an extraction method based on Digital Elevation Model(DEM) for loess gully head features and elements was proposed. Through analysing the achieved statistics of loess gully head features, loess gully heads have apparently similar and different characteristics depending on the different loess landforms where they are found. The loess head characteristics reflect their growth period and evolution tendency to a certain degree, and they indirectly represent evolutionary mechanisms. In addition, the loess gully developmental stages and the evolutionary processes can be deduced by using loess gully head characteristics. This study is of great significance for development and improvement of the theoretical system for describing loess gully landforms.展开更多
Information about the spatial distribution of soil attributes is indispensable for many land resource management applications; however, the ability of soil maps to supply such information for modern modeling tools is ...Information about the spatial distribution of soil attributes is indispensable for many land resource management applications; however, the ability of soil maps to supply such information for modern modeling tools is questionable. The objectives of this study were to investigate the possibility of predicting soil depth using some terrain attributes derived from digital elevation models (DEMs) with geographic information systems (GIS) and to suggest an approach to predict other soil attributes. Soil depth was determined at 652 field observations over the A1-Muwaqqar Watershed (70 km2) in Jordan. Terrain attributes derived from 30-m resolution DEMs were utilized to predict soil depth. The results indicated that the use of multiple linear regression models within small watershed subdivisions enabled the prediction of soil depth with a difference of 50 cm for 77% of the field observations. The spatial distribution of the predicted soil depth was visually coincided and had good correlations with the spatial distribution of the classes amalgamating three terrain attributes, slope steepness, slope shape, and compound topographic index. These suggested that the modeling of soil-landscape relationships within small watershed subdivisions using the three terrain attributes was a promising approach to predict other soil attributes.展开更多
Topographic shielding of cosmic radiation flux is a key parameter in using cosmogenic nuclides to determine surface exposure ages or erosion rates. Traditionally, this parameter is measured in the field and uncertaint...Topographic shielding of cosmic radiation flux is a key parameter in using cosmogenic nuclides to determine surface exposure ages or erosion rates. Traditionally, this parameter is measured in the field and uncertainty and/or inconsistency may exist among different investigators. This paper provides an ArcGIS python code to determine topographic shielding factors using digital elevation models (DEMs). This code can be imported into ArcGIS as a geoprocessing tool with a user-friendly graphical interface. The DEM-derived parameters using this method were validated with field measurements in central Tian Shan. Results indicate that DEM-derived shielding factors are consistent with field-measured values. It provides a valuable tool to save fieldwork efforts and has the potential to provide consistent results for different regions in the world to facilitate the comparison of cosmogenie nuclide results.展开更多
Displacement monitoring in open-pit mines is one of the important tasks for safe management of mining processes.Differential interferometric synthetic aperture radar(DInSAR),mounted on an artificial satellite,has the ...Displacement monitoring in open-pit mines is one of the important tasks for safe management of mining processes.Differential interferometric synthetic aperture radar(DInSAR),mounted on an artificial satellite,has the potential to be a cost-effective method for monitoring surface displacements over extensive areas,such as open-pit mines.DInSAR requires the ground surface elevation data in the process of its analysis as a digital elevation model(DEM).However,since the topography of the ground surface in open-pit mines changes largely due to excavations,measurement errors can occur due to insufficient information on the elevation of mining areas.In this paper,effect of different elevation models on the accuracy of the displacement monitoring results by DInSAR is investigated at a limestone quarry.In addition,validity of the DInSAR results using an appropriate DEM is examined by comparing them with the results obtained by global positioning system(GPS)monitoring conducted for three years at the same limestone quarry.It is found that the uncertainty of DEMs induces large errors in the displacement monitoring results if the baseline length of the satellites between the master and the slave data is longer than a few hundred meters.Comparing the monitoring results of DInSAR and GPS,the root mean square error(RMSE)of the discrepancy between the two sets of results is less than 10 mm if an appropriate DEM,considering the excavation processes,is used.It is proven that DInSAR can be applied for monitoring the displacements of mine slopes with centimeter-level accuracy.展开更多
Tropical mountainous areas not only provide substantial carbon storage and play an important role in global biological diversity, but also provide basic livelihood for a large number of poor ethnic minorities. However...Tropical mountainous areas not only provide substantial carbon storage and play an important role in global biological diversity, but also provide basic livelihood for a large number of poor ethnic minorities. However, there is no unified and explicit definition for mountainous areas. The local elevation range(LER) is a crucial structural parameter for delineating mountainous areas. However, current LER products are limited by the subjective selection of an optimum statistical window or coarser spatial resolution of topographical data. In this study, we presented an approach using thresholds for three topographic parameters, elevation, slope, and LER, derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model(ASTER GDEM) to redelineate the vast mountainous areas of mainland Southeast Asia(MSEA). The mean change-point analysis method was applied to determine the optimum statistical window of the 1 arc second(approximately 30 m)-resolution GDEM LER. The results showed that: First, the optimum statistical window is 38 × 38 cell units(width × height) in a rectangular neighborhood, or an area of about 1.30 km^2 for calculating GDEM LER in MSEA. Second, the LER of more than 80% of the area ranges from 30 m to 499 m in MSEA. The LERs in the northern and northwestern MSEA are greater than their counterparts in the south and east. Third, the area of the re-delineated mountainous areas was 83.52 × 10~4 km^2, about 38.71% of the total area. Spatially, the mountainous areas are mainly distributed in the north and northeast of MSEA. The re-delineated 30-m resolution map of the mountainous areas will serve as a topographical dataset for monitoring mountainrelated land surface changes in MSEA. The parameter-modified mountain extraction procedure can be expanded to delineate global mountainous areas.展开更多
Blumeria graminis f. sp. tritici, the pathogen that causes wheat powdery mildew, is one of the most important diseases affecting wheat production in China, and the oversummering is the key stage of wheat powdery milde...Blumeria graminis f. sp. tritici, the pathogen that causes wheat powdery mildew, is one of the most important diseases affecting wheat production in China, and the oversummering is the key stage of wheat powdery mildew epidemic. The more oversummering regionalization of wheat powdery mildew has played an important role in disease prediction, prevention and control. In this study, we analyzed the correlation between oversummering data of wheat powdery mildew and the meteorological factors over the past years, and determined that temperature was the key meteorological factor influencing oversummering of wheat powdery mildew. The average temperature at which wheat powdery mildew growth was terminated(26.2°C) was used as the threshold temperature to regionalize the oversummering range of wheat powdery mildew. This regionalization was done using the GIS ordinary kriging method combined with the Digital Elevation model(DEM) of China. The results showed that annual probability of oversummering region based on Model 26.2 were consistent with the actual survey of the more summer wheat powdery mildew. Wheat powdery mildew oversummering regions in China mainly cover mountainous or high-altitude areas, and these regions form a narrow north-south oversummering zone. Oversummering regions of wheat powdery mildew is mainly concentrated in the high-altitude wheat growing areas, including northern and southern Yunnan, northwestern Guizhou, northern and southern Sichuan, northern and southern Chongqing, eastern and southern Gansu, southeastern Ningxia, northern and southern Shaanxi, central Shanxi, western Hubei, western Henan, northern and western Hebei, western Liaoning, eastern Tibet, eastern Qinghai, western Xinjiang and other regions of China.展开更多
Although many studies have investigated slope gradient uncertainty derived from Digital Elevation Models(DEMs), the research concerning slope length uncertainty is far from mature. This discrepancy affects the availab...Although many studies have investigated slope gradient uncertainty derived from Digital Elevation Models(DEMs), the research concerning slope length uncertainty is far from mature. This discrepancy affects the availability and accuracy of soil erosion as well as hydrological modeling. This study investigates the formation and distribution of existing errors and uncertainties in slope length derivation based on 5-m resolution DEMs of the Loess Plateau in the middle of China. The slope length accuracy in three different landform areas is examined to analyse algorithm effects. The experiments indicate that the accuracy of the flat test area is lower than that of the rougher areas. The value from the specific contributing area(SCA) method is greater than the cumulative slope length(CSL), and the differences between these two methods arise from the shape of the upslope area. The variation of mean slope length derived from various DEM resolutions and landforms. The slope length accuracy decreases with increasing grid size and terrain complexity at the six test sites. A regression model is built to express the relationship of mean slope length with DEM resolution less than 85 m and terrain complexity represented by gully density. The results support the understanding of the slope length accuracy, thereby aiding in the effective evaluation of the modeling effect of surface process.展开更多
This paper investigates the differences that result from applying different approaches to uncertainty modeling and reports an experimental examining error estimation and propagation in elevation and slope, with the la...This paper investigates the differences that result from applying different approaches to uncertainty modeling and reports an experimental examining error estimation and propagation in elevation and slope, with the latter derived from the former. It is confirmed that significant differences exist between uncertainty descriptors, and propagation of uncertainty to end products is immensely affected by the specification of source uncertainty.展开更多
In China, many scenic and tourism areas are suffering from the urbanization that results from physical development of tourism projects, leading to the removal of the vegetative cover, the creation of areas impermeable...In China, many scenic and tourism areas are suffering from the urbanization that results from physical development of tourism projects, leading to the removal of the vegetative cover, the creation of areas impermeable to water, in-stream modifications, and other problems. In this paper, the risk of soil erosion and its ecological risks in the West Lake Scenic Spots (WLSS) area were quantitatively evaluated by integrating the revised universal soil loss equation (RUSLE) with a digital elevation model (DEM) and geographical information system (GIS) software. The standard RUSLE factors were modified to account for local climatic and topographic characteristics reflected in the DEM maps, and for the soil types and vegetation cover types. An interface was created between the Areinfo software and RUSLE so that the level of soil erosion and its ecological risk in the WLSS area could be mapped immediately once the model factors were defined for the area. The results from an analysis using the Areinfo-RUSLE interface showed that the risk value in 93 % of the expanding western part of the WLSS area was moderate or more severe and the soil erosion risk in this area was thus large compared with that in the rest of the area. This paper mainly aimed to increase the awareness of the soil erosion risk in urbanizing areas and suggest that the local governments should consider the probable ecological risk resulting from soil erosion when enlarging and developing tourism areas.展开更多
Researchers in P.R.China commonly create triangulate irregular networks(TINs) from contours and then convert TINs into digital elevation models(DEMs).However,the DEM produced by this method can not precisely describe ...Researchers in P.R.China commonly create triangulate irregular networks(TINs) from contours and then convert TINs into digital elevation models(DEMs).However,the DEM produced by this method can not precisely describe and simulate key hydrological features such as rivers and drainage borders.Taking a hilly region in southwestern China as a research area and using ArcGISTM software,we analyzed the errors of different interpolations to obtain distributions of the errors and precisions of different algorithms and to provide references for DEM productions.The results show that different interpolation errors satisfy normal distributions,and large error exists near the structure line of the terrain.Furthermore,the results also show that the precision of a DEM interpolated with the Australian National University digital elevation model(ANUDEM) is higher than that interpolated with TIN.The DEM interpolated with TIN is acceptable for generating DEMs in the hilly region of southwestern China.展开更多
Helicopters are often used in mountain rescue both for rescuers moving in the area of accidents and for evacuating victims, but in steep or forested terrain finding a landing place can be problematic. The main aim of ...Helicopters are often used in mountain rescue both for rescuers moving in the area of accidents and for evacuating victims, but in steep or forested terrain finding a landing place can be problematic. The main aim of this research is to use Digital Elevation Model(DEM) and cartographic database analysis to select locations that can be used as landing site for the rescue helicopters. Methods were based on GIS analysis;both raster and vector data were used for identifying touchdown points for rescue helicopters. Based on DEM data, locations with a low slope gradient were identified;topographic vector data were used for identifying unforested sites. Then buffer zones for buildings and power lines were excluded, and it was checked whether the areas had any topographic features that prevented helicopter landings. The findings were verified on an orthophotomap. In result, GIS analyses have selected 1232 polygons that fulfilled initial criteria. Their verification on orthophotomap has shown that only 55% of them could be potentially used as landing site. Landing sites can be found mainly on side ridges of mountain ranges and in valley beds, when those on ridges are most important in this research. The greatest difficulties and methodological challenges are posed by: identification of sites having a shape which prevents landing, the obsolescence of data due to environment dynamics, the presence of features that are not shown on maps but prevent helicopter landings. A map of landing sites is a very useful tool to conduct rescue operations, but each use of a given landing site requires both in-field and numerical verification. The analysis demonstrated that GIS toolsare useful in pre-planning of rescue missions, and also showed that such data must be kept up-to-date and in-field verification is needed continuously, the more so as it plays an important role in ensuring the safety of rescuers and victims.展开更多
This paper considers the problems of the potential development of erosion processes in the natural landscapes of northern taiga in the Russian plain. It is considered that in forest ecosystems, erosion processes are s...This paper considers the problems of the potential development of erosion processes in the natural landscapes of northern taiga in the Russian plain. It is considered that in forest ecosystems, erosion processes are slow and are weakly reflected in the terrain. However, the situation changes radically if the vegetation cover integrity is violated, which is inevitable with the modern methods of developing northern territories. Furthermore, global changes in average annual temperatures and the occurrence of karst processes may be the reason behind the development of erosion processes. The authors suggest a method for determining territories with a varying occurrence probability of erosional processes, based on digital elevation modelling. The territory of the Pinezhsky Nature Reserve(Arkhangelsk region) was chosen as the test plot. Direct field studies were previously used to detect exogenous geological processes in this territory. The authors were the first to suggest digital elevation modelling as a method that allows determining the potential danger of erosion in karst landscapes of the northern taiga. The geomorphometric studies resulted in the determination of areas with the greatest and lowest occurrence probability of erosion processes in the Pinezhsky Nature Reserve. It was established that the most significant erosion type was linear erosion, represented by incised river valleys and karst ravines. Sheet erosion is less significant and occurs as sinkholes, local declines, and chasms over the valleys of subterranean rivers.展开更多
A practical method to extract drainage network from DEM (digital elevation model) is introduced. DEM pretreatment includes depression and flat areas treatment. The flow direction of each grid cell in DEM is calculated...A practical method to extract drainage network from DEM (digital elevation model) is introduced. DEM pretreatment includes depression and flat areas treatment. The flow direction of each grid cell in DEM is calculated according to the 8-direction pour point model, and then the flow accumulation grid from the flow direction grid. With the flow accumulation grid, streams are defined according to the given threshold value of flow accumulation. Taking Gufo River watershed as an example, the extraction of drainage network was done from DEM. The results are basically consistent with the digitized drainage network from the relief maps.展开更多
This paper presents a component object model (COM) based framework for managing, analyzing and visualizing massive multi-scale digital elevation models (DEMs). The framework consists of a data management component (DM...This paper presents a component object model (COM) based framework for managing, analyzing and visualizing massive multi-scale digital elevation models (DEMs). The framework consists of a data management component (DMC), which is based on RDBMS/ORDBMS, a data analysis component (DAC) and a data render component (DRC). DMC can manage massive multi-scale data expressed at various reference frames within a pyramid database and can support fast access to data at variable resolution. DAC integrates many useful applied analytic functions whose results can be overlaid with the 3D scene rendered by DRC. DRC provides view-dependent data paging with the support of the underlying DMC and organizes the potential visible data at different levels into rendering.展开更多
A 3-craft formation configuration is proposed to perform the digital elevation model (DEM) for the distributed spacebome interferometric synthetic aperture radar (InSAR), and it is optimized by the modified ant co...A 3-craft formation configuration is proposed to perform the digital elevation model (DEM) for the distributed spacebome interferometric synthetic aperture radar (InSAR), and it is optimized by the modified ant colony algorithm to have the best compatibility with J2 invariant orbits created by differential correction algorithm. The configuration has succeeded in assigning the across-track baseline to vary periodically and with its mean value equal to the optimal baseline determined by the relative height measurement accuracy. The required relationship between crafts' magnitudes and phases is formulated for the general case of interferometry measure from non-orthographic and non-lateral view. The J2 invariant configurations created by differential correction algorithm are employed to investigate their compatibility with the required configuration. The colony algorithm is applied to search the optimal configuration holding the near-constant across-track baseline under the J2 perturbation, and the absolute height measurement accuracy is preferable as expected.展开更多
基金The authors gratefully acknowledge the science teams of NASA High Mountain Asia 8-meter DEM and NASA ICESat-2 for providing access to the data.This work was conducted with the infrastructure provided by the National Remote Sensing Centre(NRSC),for which the authors were indebted to the Director,NRSC,Hyderabad.We acknowledge the continued support and scientific insights from Mr.Rakesh Fararoda,Mr.Sagar S Salunkhe,Mr.Hansraj Meena,Mr.Ashish K.Jain and other staff members of Regional Remote Sensing Centre-West,NRSC/ISRO,Jodhpur.The authors want to acknowledge Dr.Kamal Pandey,Scientist,IIRS,Dehradun,for sharing field-level information about the Auli-Joshimath.This research did not receive any specific grant from funding agencies in the public,commercial,or not-for-profit sectors.
文摘High Mountain Asia(HMA),recognized as a third pole,needs regular and intense studies as it is susceptible to climate change.An accurate and high-resolution Digital Elevation Model(DEM)for this region enables us to analyze it in a 3D environment and understand its intricate role as the Water Tower of Asia.The science teams of NASA realized an 8-m DEM using satellite stereo imagery for HMA,termed HMA 8-m DEM.In this research,we assessed the vertical accuracy of HMA 8-m DEM using reference elevations from ICESat-2 geolocated photons at three test sites of varied topography and land covers.Inferences were made from statistical quantifiers and elevation profiles.For the world’s highest mountain,Mount Everest,and its surroundings,Root Mean Squared Error(RMSE)and Mean Absolute Error(MAE)resulted in 1.94 m and 1.66 m,respectively;however,a uniform positive bias observed in the elevation profiles indicates the seasonal snow cover change will dent the accurate estimation of the elevation in this sort of test sites.The second test site containing gentle slopes with forest patches has exhibited the Digital Surface Model(DSM)features with RMSE and MAE of 0.58 m and 0.52 m,respectively.The third test site,situated in the Zanda County of the Qinghai-Tibet,is a relatively flat terrain bed,mostly bare earth with sudden river cuts,and has minimal errors with RMSE and MAE of 0.32 m and 0.29 m,respectively,and with a negligible bias.Additionally,in one more test site,the feasibility of detecting the glacial lakes was tested,which resulted in exhibiting a flat surface over the surface of the lakes,indicating the potential of HMA 8-m DEM for deriving the hydrological parameters.The results accrued in this investigation confirm that the HMA 8-m DEM has the best vertical accuracy and should be of high use for analyzing natural hazards and monitoring glacier surfaces.
文摘Water erosion is a serious problem that leads to soil degradation,loss,and the destruction of structures.Assessing the risk of erosion and determining the affected areas has become crucial in order to understand the main factors influencing its evolution and to minimize its impacts.This study focuses on evaluating the risk of erosion in the Assif el mal watershed,which is located in the High Atlas Mountains.The Erosion Potential Model(EPM)is used to estimate soil losses depending on various parameters such as lithology,hydrology,topography,and morphometry.Geographic information systems and remote sensing techniques are employed to map areas with high erosive potential and their relationship with the distribution of factors involved.Different digital elevation models are also used in this study to highlight the impact of data quality on the accuracy of the results.The findings reveal that approximately 59%of the total area in the Assif el mal basin has low to very low potential for soil losses,while 22%is moderately affected and 19.9%is at high to very high risk.It is therefore crucial to implement soil conservation measures to mitigate and prevent erosion risks.
基金Supported by the National Natural Science Foundation of China(42221002,42171432)Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities.
文摘The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo mapping camera equipped on lunar orbiter before launching.In this work,an imaging simulation method consid-ering the attitude jitter is presented.The impact analysis of different attitude jitter on terrain undulation is conduct-ed by simulating jitter at three attitude angles,respectively.The proposed simulation method is based on the rigor-ous sensor model,using the lunar digital elevation model(DEM)and orthoimage as reference data.The orbit and attitude of the lunar stereo mapping camera are simulated while considering the attitude jitter.Two-dimensional simulated stereo images are generated according to the position and attitude of the orbiter in a given orbit.Experi-mental analyses were conducted by the DEM with the simulated stereo image.The simulation imaging results demonstrate that the proposed method can ensure imaging efficiency without losing the accuracy of topographic mapping.The effect of attitude jitter on the stereo mapping accuracy of the simulated images was analyzed through a DEM comparison.
基金The National Natural Science Foundation of China under contract Nos 41941010 and 42006184the Fundamental Research Funds for the Central Universities under contract No.2042022kf1068。
文摘In recent years,there has been a significant acceleration in the thinning,calving and retreat of the Pine Island Ice Shelf(PIIS).The basal channels,results of enhanced basal melting,have the potential to significantly impact the stability of the PIIS.In this study,we used a variety of remote sensing data,including Landsat,REMA DEM,ICESat-1 and ICESat-2 satellite altimetry observations,and Ice Bridge airborne measurements,to study the spatiotemporal changes in the basal channels from 2003 to 2020 and basal melt rate from 2010 to 2017 of the PIIS under the Eulerian framework.We found that the basal channels are highly developed in the PIIS,with a total length exceeding 450 km.Most of the basal channels are ocean-sourced or groundingline-sourced basal channels,caused by the rapid melting under the ice shelf or near the groundingline.A raised seabed prevented warm water intrusion into the eastern branch of the PIIS,resulting in a lower basal melt rate in that area.In contrast,a deepsea trough facilitates warm seawater into the mainstream and the western branch of the PIIS,resulting in a higher basal melt rate in the main-stream,and the surface elevation changes above the basal channels of the mainstream and western branch are more significant.The El Ni?o event in 2015–2016 possibly slowed down the basal melting of the PIIS by modulating wind field,surface sea temperature and depth seawater temperature.Ocean and atmospheric changes were driven by El Ni?o,which can further explain and confirm the changes in the basal melting of the PIIS.
基金This work was supported by Knowledge Innovation Pro-gram Chinese Academy of Sciences (No. KZCX2-SW-320-3 & KZCX3-SW-425).
文摘Boundary extraction of watershed is an important step in forest landscape research. The boundary of the upriver wa-tershed of the Hunhe River in the sub-alpine Qingyuan County of eastern Liaoning Province, China was extracted by digital elevation modeling (DEM) data in ArcInfo8.1. Remote sensing image of the corresponding region was applied to help modify its copy according to Enhanced Thematic Mapper (ETM) image抯 profuse geomorphological structure information. Both the DEM-dependent boundary and modified copy were overlapped with county map and drainage network map to visually check the effects of result. Overlap of county map suggested a nice extraction of the boundary line since the two layers matched precisely, which indicated the DEM-dependent boundary by program was effective and precise. Further upload of drainage network showed discrepancies between the boundary and the drainage network. Altogether, there were three sections of the extraction result that needed to correct. Compared with this extraction boundary, the modified boundary had a better match to the drainage network as well as to the county map. Comprehensive analysis demonstrated that the program extraction has generally fine precision in position and excels the digitized result by hand. The errors of the DEM-dependant extraction are due to the fact that it is difficult for program to recognize sections of complex landform especially altered by human activities, but these errors are discernable and adjustable because the spatial resolution of ETM image is less than that of DEM. This study result proved that application of remote sensing information could help obtain better result when DEM method is used in extraction of watershed boundary.
基金Under the auspices of National Youth Science Foundation of China(No.41001294)Key Project of National Natural Science Foundation of China(No.40930531)Research Fund of State Key Laboratory Resources and Environment Information System(No.2010KF0002SA)
文摘In China′s Loess Plateau area, gully head is the most active zone of a drainage system in gully areas. The differentiation of loess gully head follows geospatial patterns and reflects the process of the loess landform development and evolution of its drainage system to some extent. In this study, the geomorphic meaning, basic characteristics, morphological structure and the basic types of loess gully heads were systematically analysed. Then, the loess gully head′s conceptual model was established, and an extraction method based on Digital Elevation Model(DEM) for loess gully head features and elements was proposed. Through analysing the achieved statistics of loess gully head features, loess gully heads have apparently similar and different characteristics depending on the different loess landforms where they are found. The loess head characteristics reflect their growth period and evolution tendency to a certain degree, and they indirectly represent evolutionary mechanisms. In addition, the loess gully developmental stages and the evolutionary processes can be deduced by using loess gully head characteristics. This study is of great significance for development and improvement of the theoretical system for describing loess gully landforms.
基金Supported by the International Foundation for Science,Stockholm,Sweden (No.C/3402-1)
文摘Information about the spatial distribution of soil attributes is indispensable for many land resource management applications; however, the ability of soil maps to supply such information for modern modeling tools is questionable. The objectives of this study were to investigate the possibility of predicting soil depth using some terrain attributes derived from digital elevation models (DEMs) with geographic information systems (GIS) and to suggest an approach to predict other soil attributes. Soil depth was determined at 652 field observations over the A1-Muwaqqar Watershed (70 km2) in Jordan. Terrain attributes derived from 30-m resolution DEMs were utilized to predict soil depth. The results indicated that the use of multiple linear regression models within small watershed subdivisions enabled the prediction of soil depth with a difference of 50 cm for 77% of the field observations. The spatial distribution of the predicted soil depth was visually coincided and had good correlations with the spatial distribution of the classes amalgamating three terrain attributes, slope steepness, slope shape, and compound topographic index. These suggested that the modeling of soil-landscape relationships within small watershed subdivisions using the three terrain attributes was a promising approach to predict other soil attributes.
基金supported by the Professional Development Award of the University of Tennessee
文摘Topographic shielding of cosmic radiation flux is a key parameter in using cosmogenic nuclides to determine surface exposure ages or erosion rates. Traditionally, this parameter is measured in the field and uncertainty and/or inconsistency may exist among different investigators. This paper provides an ArcGIS python code to determine topographic shielding factors using digital elevation models (DEMs). This code can be imported into ArcGIS as a geoprocessing tool with a user-friendly graphical interface. The DEM-derived parameters using this method were validated with field measurements in central Tian Shan. Results indicate that DEM-derived shielding factors are consistent with field-measured values. It provides a valuable tool to save fieldwork efforts and has the potential to provide consistent results for different regions in the world to facilitate the comparison of cosmogenie nuclide results.
基金partially supported by JSPS KAKENHI(Grant No.16H03153)the Limestone Association of Japan。
文摘Displacement monitoring in open-pit mines is one of the important tasks for safe management of mining processes.Differential interferometric synthetic aperture radar(DInSAR),mounted on an artificial satellite,has the potential to be a cost-effective method for monitoring surface displacements over extensive areas,such as open-pit mines.DInSAR requires the ground surface elevation data in the process of its analysis as a digital elevation model(DEM).However,since the topography of the ground surface in open-pit mines changes largely due to excavations,measurement errors can occur due to insufficient information on the elevation of mining areas.In this paper,effect of different elevation models on the accuracy of the displacement monitoring results by DInSAR is investigated at a limestone quarry.In addition,validity of the DInSAR results using an appropriate DEM is examined by comparing them with the results obtained by global positioning system(GPS)monitoring conducted for three years at the same limestone quarry.It is found that the uncertainty of DEMs induces large errors in the displacement monitoring results if the baseline length of the satellites between the master and the slave data is longer than a few hundred meters.Comparing the monitoring results of DInSAR and GPS,the root mean square error(RMSE)of the discrepancy between the two sets of results is less than 10 mm if an appropriate DEM,considering the excavation processes,is used.It is proven that DInSAR can be applied for monitoring the displacements of mine slopes with centimeter-level accuracy.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA20010203)
文摘Tropical mountainous areas not only provide substantial carbon storage and play an important role in global biological diversity, but also provide basic livelihood for a large number of poor ethnic minorities. However, there is no unified and explicit definition for mountainous areas. The local elevation range(LER) is a crucial structural parameter for delineating mountainous areas. However, current LER products are limited by the subjective selection of an optimum statistical window or coarser spatial resolution of topographical data. In this study, we presented an approach using thresholds for three topographic parameters, elevation, slope, and LER, derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model(ASTER GDEM) to redelineate the vast mountainous areas of mainland Southeast Asia(MSEA). The mean change-point analysis method was applied to determine the optimum statistical window of the 1 arc second(approximately 30 m)-resolution GDEM LER. The results showed that: First, the optimum statistical window is 38 × 38 cell units(width × height) in a rectangular neighborhood, or an area of about 1.30 km^2 for calculating GDEM LER in MSEA. Second, the LER of more than 80% of the area ranges from 30 m to 499 m in MSEA. The LERs in the northern and northwestern MSEA are greater than their counterparts in the south and east. Third, the area of the re-delineated mountainous areas was 83.52 × 10~4 km^2, about 38.71% of the total area. Spatially, the mountainous areas are mainly distributed in the north and northeast of MSEA. The re-delineated 30-m resolution map of the mountainous areas will serve as a topographical dataset for monitoring mountainrelated land surface changes in MSEA. The parameter-modified mountain extraction procedure can be expanded to delineate global mountainous areas.
基金financially supported by the National Natural Science Foundation of China(31271987)the National key Research and Development Program of China(2016YFD0300702)the Special Fund for Agro-scientific Research in the Public Interest,China(201303016)
文摘Blumeria graminis f. sp. tritici, the pathogen that causes wheat powdery mildew, is one of the most important diseases affecting wheat production in China, and the oversummering is the key stage of wheat powdery mildew epidemic. The more oversummering regionalization of wheat powdery mildew has played an important role in disease prediction, prevention and control. In this study, we analyzed the correlation between oversummering data of wheat powdery mildew and the meteorological factors over the past years, and determined that temperature was the key meteorological factor influencing oversummering of wheat powdery mildew. The average temperature at which wheat powdery mildew growth was terminated(26.2°C) was used as the threshold temperature to regionalize the oversummering range of wheat powdery mildew. This regionalization was done using the GIS ordinary kriging method combined with the Digital Elevation model(DEM) of China. The results showed that annual probability of oversummering region based on Model 26.2 were consistent with the actual survey of the more summer wheat powdery mildew. Wheat powdery mildew oversummering regions in China mainly cover mountainous or high-altitude areas, and these regions form a narrow north-south oversummering zone. Oversummering regions of wheat powdery mildew is mainly concentrated in the high-altitude wheat growing areas, including northern and southern Yunnan, northwestern Guizhou, northern and southern Sichuan, northern and southern Chongqing, eastern and southern Gansu, southeastern Ningxia, northern and southern Shaanxi, central Shanxi, western Hubei, western Henan, northern and western Hebei, western Liaoning, eastern Tibet, eastern Qinghai, western Xinjiang and other regions of China.
基金supported by the National Natural Science Foundation of China(Grant Nos.41471316,41401456)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions-PAPD(Grant No.164320H101)+1 种基金Major University Science Research Project of Jiangsu Province(Grant No.13KJA170001)the financial support provided by the PhD Scholarship from Eurasic Pacific Uninet for collaboration research in Austria
文摘Although many studies have investigated slope gradient uncertainty derived from Digital Elevation Models(DEMs), the research concerning slope length uncertainty is far from mature. This discrepancy affects the availability and accuracy of soil erosion as well as hydrological modeling. This study investigates the formation and distribution of existing errors and uncertainties in slope length derivation based on 5-m resolution DEMs of the Loess Plateau in the middle of China. The slope length accuracy in three different landform areas is examined to analyse algorithm effects. The experiments indicate that the accuracy of the flat test area is lower than that of the rougher areas. The value from the specific contributing area(SCA) method is greater than the cumulative slope length(CSL), and the differences between these two methods arise from the shape of the upslope area. The variation of mean slope length derived from various DEM resolutions and landforms. The slope length accuracy decreases with increasing grid size and terrain complexity at the six test sites. A regression model is built to express the relationship of mean slope length with DEM resolution less than 85 m and terrain complexity represented by gully density. The results support the understanding of the slope length accuracy, thereby aiding in the effective evaluation of the modeling effect of surface process.
文摘This paper investigates the differences that result from applying different approaches to uncertainty modeling and reports an experimental examining error estimation and propagation in elevation and slope, with the latter derived from the former. It is confirmed that significant differences exist between uncertainty descriptors, and propagation of uncertainty to end products is immensely affected by the specification of source uncertainty.
基金financial support from the National Natural Science Foundation of China(No.40201021)the Zhejiang Natural Science Foundation of China(M403040).
文摘In China, many scenic and tourism areas are suffering from the urbanization that results from physical development of tourism projects, leading to the removal of the vegetative cover, the creation of areas impermeable to water, in-stream modifications, and other problems. In this paper, the risk of soil erosion and its ecological risks in the West Lake Scenic Spots (WLSS) area were quantitatively evaluated by integrating the revised universal soil loss equation (RUSLE) with a digital elevation model (DEM) and geographical information system (GIS) software. The standard RUSLE factors were modified to account for local climatic and topographic characteristics reflected in the DEM maps, and for the soil types and vegetation cover types. An interface was created between the Areinfo software and RUSLE so that the level of soil erosion and its ecological risk in the WLSS area could be mapped immediately once the model factors were defined for the area. The results from an analysis using the Areinfo-RUSLE interface showed that the risk value in 93 % of the expanding western part of the WLSS area was moderate or more severe and the soil erosion risk in this area was thus large compared with that in the rest of the area. This paper mainly aimed to increase the awareness of the soil erosion risk in urbanizing areas and suggest that the local governments should consider the probable ecological risk resulting from soil erosion when enlarging and developing tourism areas.
基金Funded by the Natural Science Foundation of Chongqing under Grant No. CSTC2006AB1015.
文摘Researchers in P.R.China commonly create triangulate irregular networks(TINs) from contours and then convert TINs into digital elevation models(DEMs).However,the DEM produced by this method can not precisely describe and simulate key hydrological features such as rivers and drainage borders.Taking a hilly region in southwestern China as a research area and using ArcGISTM software,we analyzed the errors of different interpolations to obtain distributions of the errors and precisions of different algorithms and to provide references for DEM productions.The results show that different interpolation errors satisfy normal distributions,and large error exists near the structure line of the terrain.Furthermore,the results also show that the precision of a DEM interpolated with the Australian National University digital elevation model(ANUDEM) is higher than that interpolated with TIN.The DEM interpolated with TIN is acceptable for generating DEMs in the hilly region of southwestern China.
文摘Helicopters are often used in mountain rescue both for rescuers moving in the area of accidents and for evacuating victims, but in steep or forested terrain finding a landing place can be problematic. The main aim of this research is to use Digital Elevation Model(DEM) and cartographic database analysis to select locations that can be used as landing site for the rescue helicopters. Methods were based on GIS analysis;both raster and vector data were used for identifying touchdown points for rescue helicopters. Based on DEM data, locations with a low slope gradient were identified;topographic vector data were used for identifying unforested sites. Then buffer zones for buildings and power lines were excluded, and it was checked whether the areas had any topographic features that prevented helicopter landings. The findings were verified on an orthophotomap. In result, GIS analyses have selected 1232 polygons that fulfilled initial criteria. Their verification on orthophotomap has shown that only 55% of them could be potentially used as landing site. Landing sites can be found mainly on side ridges of mountain ranges and in valley beds, when those on ridges are most important in this research. The greatest difficulties and methodological challenges are posed by: identification of sites having a shape which prevents landing, the obsolescence of data due to environment dynamics, the presence of features that are not shown on maps but prevent helicopter landings. A map of landing sites is a very useful tool to conduct rescue operations, but each use of a given landing site requires both in-field and numerical verification. The analysis demonstrated that GIS toolsare useful in pre-planning of rescue missions, and also showed that such data must be kept up-to-date and in-field verification is needed continuously, the more so as it plays an important role in ensuring the safety of rescuers and victims.
基金sponsored by Russian Federal Agency of Scientific Organizations within the project№0410-2014-0024?Development of a comprehensive physical and geo-environmental quantitative model of interaction(lithosphere,hydrosphere,biosphere,atmosphere and,partially,the ionosphere)in the areas of north tectonic units of the Russian Plate and assess of their impact on the environment
文摘This paper considers the problems of the potential development of erosion processes in the natural landscapes of northern taiga in the Russian plain. It is considered that in forest ecosystems, erosion processes are slow and are weakly reflected in the terrain. However, the situation changes radically if the vegetation cover integrity is violated, which is inevitable with the modern methods of developing northern territories. Furthermore, global changes in average annual temperatures and the occurrence of karst processes may be the reason behind the development of erosion processes. The authors suggest a method for determining territories with a varying occurrence probability of erosional processes, based on digital elevation modelling. The territory of the Pinezhsky Nature Reserve(Arkhangelsk region) was chosen as the test plot. Direct field studies were previously used to detect exogenous geological processes in this territory. The authors were the first to suggest digital elevation modelling as a method that allows determining the potential danger of erosion in karst landscapes of the northern taiga. The geomorphometric studies resulted in the determination of areas with the greatest and lowest occurrence probability of erosion processes in the Pinezhsky Nature Reserve. It was established that the most significant erosion type was linear erosion, represented by incised river valleys and karst ravines. Sheet erosion is less significant and occurs as sinkholes, local declines, and chasms over the valleys of subterranean rivers.
文摘A practical method to extract drainage network from DEM (digital elevation model) is introduced. DEM pretreatment includes depression and flat areas treatment. The flow direction of each grid cell in DEM is calculated according to the 8-direction pour point model, and then the flow accumulation grid from the flow direction grid. With the flow accumulation grid, streams are defined according to the given threshold value of flow accumulation. Taking Gufo River watershed as an example, the extraction of drainage network was done from DEM. The results are basically consistent with the digitized drainage network from the relief maps.
文摘This paper presents a component object model (COM) based framework for managing, analyzing and visualizing massive multi-scale digital elevation models (DEMs). The framework consists of a data management component (DMC), which is based on RDBMS/ORDBMS, a data analysis component (DAC) and a data render component (DRC). DMC can manage massive multi-scale data expressed at various reference frames within a pyramid database and can support fast access to data at variable resolution. DAC integrates many useful applied analytic functions whose results can be overlaid with the 3D scene rendered by DRC. DRC provides view-dependent data paging with the support of the underlying DMC and organizes the potential visible data at different levels into rendering.
基金supported by the National Natural Science Foundation of China (10702003)
文摘A 3-craft formation configuration is proposed to perform the digital elevation model (DEM) for the distributed spacebome interferometric synthetic aperture radar (InSAR), and it is optimized by the modified ant colony algorithm to have the best compatibility with J2 invariant orbits created by differential correction algorithm. The configuration has succeeded in assigning the across-track baseline to vary periodically and with its mean value equal to the optimal baseline determined by the relative height measurement accuracy. The required relationship between crafts' magnitudes and phases is formulated for the general case of interferometry measure from non-orthographic and non-lateral view. The J2 invariant configurations created by differential correction algorithm are employed to investigate their compatibility with the required configuration. The colony algorithm is applied to search the optimal configuration holding the near-constant across-track baseline under the J2 perturbation, and the absolute height measurement accuracy is preferable as expected.