A new type of variable polarity welding power modulated with high-frequency pulse current is developed. Series of high-frequency pulse current is superimposed on direct-current-electrode-negative (DCEN), which can i...A new type of variable polarity welding power modulated with high-frequency pulse current is developed. Series of high-frequency pulse current is superimposed on direct-current-electrode-negative (DCEN), which can improve the crystallization process in the weld bead as a result of the electromagnetic force generated by pulse current. Digital signal processor (DSP) is used to realize the closed-loop control of the first inverter, variable polarity output of the second inverter and high-frequency pulse current superposition.展开更多
The paper mainly focuses on the digital pulse width modulation (DPWM) control techniques for high performance power electronic circuit design. The problem to be solved in this study addresses the DPWM converter design...The paper mainly focuses on the digital pulse width modulation (DPWM) control techniques for high performance power electronic circuit design. The problem to be solved in this study addresses the DPWM converter design for DC to DC conversion process. The control techniques have been utilized the Fuzzy Logic Rules Base method for proposed SIMULINK model of high performance power electronic circuit. The analytical calculations for real circuit design have been completed based on the mathematical modeling of the system. The results from the developed SIMULINK model confirm the target specifications of the high performance condition for power electronic circuit which was met the objective of this study. The numerical results have been carried out with the help of MATLAB/SIMULINK.展开更多
Voltage and frequency are usually considered and assessed independently in the design and operation of electrical networks. However, these two are linked. Each and every malfunctioning electrical system has an impact ...Voltage and frequency are usually considered and assessed independently in the design and operation of electrical networks. However, these two are linked. Each and every malfunctioning electrical system has an impact on both voltage and frequency. This paper presents the opportunity for monitoring the distributed electrical energy by means of a system that monitors, controls, and provides a breakpoint based on high or low voltage and frequency tripping mechanism that avoids any damage to the load. The designed system comprised a switch mode power supply (SMPS), a direct digital synthesizer (DDS), and PIC16F876A microcontroller techniques for stable voltage and frequency outputs. Proteus design suite version 8.11 software and Benchcope SDS1102CN were used for modeling and simulation. The hardware prototype was implemented at a telecom cell site for data capturing and analysis. Test results showed that the implementation of the prototype provided stable and constant outputs of 222 V/50 Hz and 112 V/60 Hz which constituted 99% and 99.8% efficiency for voltage and frequency performance respectively. The paper also discusses different technologies that can be adopted by the system to mitigate voltage and frequency effects on customer appliances.展开更多
The present paper deals with the development of a modular, flexible and structured block to block approach for the study of regulators by implementing the different blocks on a DSP (digital signal processor). The pr...The present paper deals with the development of a modular, flexible and structured block to block approach for the study of regulators by implementing the different blocks on a DSP (digital signal processor). The proposed low-cost approach has been applied and validated by the implementation of an industrial regulator in a real time hardware-in-the-loop simulation of a mixed islanded power network including precise models of the hydraulic system. The studied network is constituted of three different types of electrical power generation systems and a consumer.展开更多
为提高三相有源电力滤波器(active power filter,APF)的动态控制性能,基于PWM原理提出一种三相APF的等效离散切换系统模型(equivalent discrete-time switched linear system,EDSLS),经平衡流形邻域线性化后得到其线性离散系统模型(line...为提高三相有源电力滤波器(active power filter,APF)的动态控制性能,基于PWM原理提出一种三相APF的等效离散切换系统模型(equivalent discrete-time switched linear system,EDSLS),经平衡流形邻域线性化后得到其线性离散系统模型(linear equivalent discrete-time switched linear system,LEDSLS),最后针对该模型设计了能够实时跟踪补偿指令电流的二次线性最优控制器。该控制器以PWM占空比为控制量,物理意义明确,易于工程实现,并具有潜在的应用价值。仿真结果证明了该系统模型的正确性,设计的控制器可有效提高三相APF的动态性能。展开更多
文摘A new type of variable polarity welding power modulated with high-frequency pulse current is developed. Series of high-frequency pulse current is superimposed on direct-current-electrode-negative (DCEN), which can improve the crystallization process in the weld bead as a result of the electromagnetic force generated by pulse current. Digital signal processor (DSP) is used to realize the closed-loop control of the first inverter, variable polarity output of the second inverter and high-frequency pulse current superposition.
文摘The paper mainly focuses on the digital pulse width modulation (DPWM) control techniques for high performance power electronic circuit design. The problem to be solved in this study addresses the DPWM converter design for DC to DC conversion process. The control techniques have been utilized the Fuzzy Logic Rules Base method for proposed SIMULINK model of high performance power electronic circuit. The analytical calculations for real circuit design have been completed based on the mathematical modeling of the system. The results from the developed SIMULINK model confirm the target specifications of the high performance condition for power electronic circuit which was met the objective of this study. The numerical results have been carried out with the help of MATLAB/SIMULINK.
文摘Voltage and frequency are usually considered and assessed independently in the design and operation of electrical networks. However, these two are linked. Each and every malfunctioning electrical system has an impact on both voltage and frequency. This paper presents the opportunity for monitoring the distributed electrical energy by means of a system that monitors, controls, and provides a breakpoint based on high or low voltage and frequency tripping mechanism that avoids any damage to the load. The designed system comprised a switch mode power supply (SMPS), a direct digital synthesizer (DDS), and PIC16F876A microcontroller techniques for stable voltage and frequency outputs. Proteus design suite version 8.11 software and Benchcope SDS1102CN were used for modeling and simulation. The hardware prototype was implemented at a telecom cell site for data capturing and analysis. Test results showed that the implementation of the prototype provided stable and constant outputs of 222 V/50 Hz and 112 V/60 Hz which constituted 99% and 99.8% efficiency for voltage and frequency performance respectively. The paper also discusses different technologies that can be adopted by the system to mitigate voltage and frequency effects on customer appliances.
文摘The present paper deals with the development of a modular, flexible and structured block to block approach for the study of regulators by implementing the different blocks on a DSP (digital signal processor). The proposed low-cost approach has been applied and validated by the implementation of an industrial regulator in a real time hardware-in-the-loop simulation of a mixed islanded power network including precise models of the hydraulic system. The studied network is constituted of three different types of electrical power generation systems and a consumer.
文摘为提高三相有源电力滤波器(active power filter,APF)的动态控制性能,基于PWM原理提出一种三相APF的等效离散切换系统模型(equivalent discrete-time switched linear system,EDSLS),经平衡流形邻域线性化后得到其线性离散系统模型(linear equivalent discrete-time switched linear system,LEDSLS),最后针对该模型设计了能够实时跟踪补偿指令电流的二次线性最优控制器。该控制器以PWM占空比为控制量,物理意义明确,易于工程实现,并具有潜在的应用价值。仿真结果证明了该系统模型的正确性,设计的控制器可有效提高三相APF的动态性能。