One of the main drawbacks of Digital Holography(DH)is the coherent nature of the light source,which severely corrupts the quality of holographic reconstructions.Although numerous techniques to reduce noise in DH have ...One of the main drawbacks of Digital Holography(DH)is the coherent nature of the light source,which severely corrupts the quality of holographic reconstructions.Although numerous techniques to reduce noise in DH have provided good results,holographic noise suppression remains a challenging task.We propose a novel framework that combines the concepts of encoding multiple uncorrelated digital holograms,block grouping and collaborative filtering to achieve quasi noise-free DH reconstructions.The optimized joint action of these different image-denoising methods permits the removal of up to 98%of the noise while preserving the image contrast.The resulting quality of the hologram reconstructions is comparable to the quality achievable with non-coherent techniques and far beyond the current state of art in DH.Experimental validation is provided for both singlewavelength and multi-wavelength DH,and a comparison with the most used holographic denoising methods is performed.展开更多
基金supported by DATABENC_Progetto SNECS-PON03PE_00163_1 Social Network delle Entitàdei Centri Storici.
文摘One of the main drawbacks of Digital Holography(DH)is the coherent nature of the light source,which severely corrupts the quality of holographic reconstructions.Although numerous techniques to reduce noise in DH have provided good results,holographic noise suppression remains a challenging task.We propose a novel framework that combines the concepts of encoding multiple uncorrelated digital holograms,block grouping and collaborative filtering to achieve quasi noise-free DH reconstructions.The optimized joint action of these different image-denoising methods permits the removal of up to 98%of the noise while preserving the image contrast.The resulting quality of the hologram reconstructions is comparable to the quality achievable with non-coherent techniques and far beyond the current state of art in DH.Experimental validation is provided for both singlewavelength and multi-wavelength DH,and a comparison with the most used holographic denoising methods is performed.