Three-dimensional(3D)printing is an emerging technique that has shown promising success in engineering human tissues in recent years.Further development of vatphotopolymerization printing modalities has significantly ...Three-dimensional(3D)printing is an emerging technique that has shown promising success in engineering human tissues in recent years.Further development of vatphotopolymerization printing modalities has significantly enhanced the complexity level for 3D printing of various functional structures and components.Similarly,the development of microfluidic chip systems is an emerging research sector with promising medical applications.This work demonstrates the coupling of a digital light processing(DLP)printing procedure with a microfluidic chip system to produce size-tunable,3D-printable porosities with narrow pore size distributions within a gelatin methacryloyl(GelMA)hydrogel matrix.It is found that the generation of size-tunable gas bubbles trapped within an aqueous GelMA hydrogel-precursor can be controlled with high precision.Furthermore,the porosities are printed in two-dimensional(2D)as well as in 3D using the DLP printer.In addition,the cytocompatibility of the printed porous scaffolds is investigated using fibroblasts,where high cell viabilities as well as cell proliferation,spreading,and migration are confirmed.It is anticipated that the strategy is widely applicable in a range of application areas such as tissue engineering and regenerative medicine,among others.展开更多
The soft robotics display huge advantages over their rigid counterparts when interacting with living organisms and fragile objects.As one of the most efficient actuators toward soft robotics,the soft pneumatic actuato...The soft robotics display huge advantages over their rigid counterparts when interacting with living organisms and fragile objects.As one of the most efficient actuators toward soft robotics,the soft pneumatic actuator(SPA)can produce large,complex responses with utilizing pressure as the only input source.In this work,a new approach that combines digital light processing(DLP)and injection-assisted post-curing is proposed to create SPAs that can realize different functionalities.To enable this,we develop a new class of photo-cross linked elastomers with tunable mechanical properties,good stretchability,and rapid curing speed.By carefully designing the geometry of the cavities embedded in the actuators,the resulting actuators can realize contracting,expanding,flapping,and twisting motions.In addition,we successfully fabricate a soft self-sensing bending actuator by injecting conductive liquids into the three-dimensional(3D)printed actuator,demonstrating that the present method has the potential to be used to manufacture intelligent soft robotic systems.展开更多
Conventional color-printing systems often use inks of three hues, such as CMY, CMYK and CMYKLcLm, but in order to obtain more realistic color reproductions, the ink set of more than three hues has been adopted by some...Conventional color-printing systems often use inks of three hues, such as CMY, CMYK and CMYKLcLm, but in order to obtain more realistic color reproductions, the ink set of more than three hues has been adopted by some color-printing systems. It is difficult, however, to model the composed color with the multiple inks when the number of the output ink hues exceeds three due to the none-unique mapping between the color spaces of the CIE Lab and the multi-color printing device. In this paper, we propose a fine color-printing method for multi-color printing device with the ink set of more than three hues. The proposed approach has good color expression ability and provides fine control of the printed color. By dividing the output color space into several subspaces, our method allows one-to-one mapping between the standard color space and the multi-color output color space. It has been proved effective when applied to the digital inkjet printer—Mutoh8000.展开更多
High performance hydroxyapatite(HA)ceramics with excellent densification and mechanical properties were successfully fabricated by digital light processing(DLP)three-dimensional(3D)printing technology.It was found tha...High performance hydroxyapatite(HA)ceramics with excellent densification and mechanical properties were successfully fabricated by digital light processing(DLP)three-dimensional(3D)printing technology.It was found that the sintering atmosphere of wet C02 can dramatically improve the densification process and thus lead to better mechanical properties.HA ceramics with a relative density of 97.12%and a three-point bending strength of 92.4 MPa can be achieved at a sintering temperature of 1300℃,which makes a solid foundation for application in bone engineering.Furthermore,a relatively high compressive strength of 4.09 MPa can be also achieved for a DLP-printed p-cell triply periodic minimum surface(TPMS)structure with a porosity of 74%,which meets the requirement of cancellous bone substitutes.A further cell proliferation test demonstrated that the sintering atmosphere of wet CO2 led to improve cell vitality after 7 days of cell culture Moreover,with the possible benefit from the bio-inspired structure,the 3D-printed TPMS structure significantly improved the cell vitality,which is crucial for early osteogenesis and osteointegration.展开更多
A polymer based horizontal single step waveguide fbr the sensing of alcohol is developed and analyzed.The waveguide is fabricated by 3-dimensional(3D)printing digital light processing(DLP)technology using monocure 3D ...A polymer based horizontal single step waveguide fbr the sensing of alcohol is developed and analyzed.The waveguide is fabricated by 3-dimensional(3D)printing digital light processing(DLP)technology using monocure 3D rapid ultraviolet(UV)clear resin with a refractive index of n=1.50.The fabricated waveguide is a one-piece tower shaped ridge structure.It is designed to achieve the maximum light confinement at the core by reducing the effective refractive index around the cladding region.With the surface roughness generated from the 3D printing DLP technology,various waveguides with different gap sizes are printed.Comparison is done fbr the different gap waveguides to achieve the minimum feature gap size utilizing the light re-coupling principle and polymer swelling effect.This effect occurs due to the polymer-alcohol interaction that results in the diffusion of alcohol molecules inside the core of the waveguide,thus changing the waveguide from the leaky type(without alcohol)to the guided type(with alcohol).Using this principle,the analysis of alcohol concentration performing as a larger increase in the transmitted light in tensity can be measured.In this work,the sensitivity of the system is also compared and analyzed fbr different waveguide gap sizes with different concentrations of isopropanol alcohol(IPA).A waveguide gap size of 300 jim gives the highest in crease in the transmitted optical power of 65%when tested with 10μL(500ppm)concentration of IPA.Compared with all other gaps,it also displays faster response time(/=5seconds)fbr the optical power to change right after depositing IPA in the chamber.The measured limit of detection(LOD)achieved fbr 300μm is 0.366 yL.In addition,the fabricated waveguide gap of 300μm successfully demonstrates the sen sing limit of IPA concentration below 400μpm which is considered as an exposure limit by"National Institute for Occupational Safety and Health".All the mechanical mount and the alignments are done by 3D printing fused deposition method(FDM).展开更多
Osteoid plays a crucial role in directing cell behavior and osteogenesis through its unique characteristics,including viscoelasticity and liquid crystal(LC)state.Thus,integrating osteoid-like features into 3D printing...Osteoid plays a crucial role in directing cell behavior and osteogenesis through its unique characteristics,including viscoelasticity and liquid crystal(LC)state.Thus,integrating osteoid-like features into 3D printing scaffolds proves to be a promising approach for personalized bone repair.Despite extensive research on viscoelasticity,the role of LC state in bone repair has been largely overlooked due to the scarcity of suitable LC materials.Moreover,the intricate interplay between LC state and viscoelasticity in osteogenesis remains poorly understood.Here,we developed innovative hydrogel scaffolds with osteoid-like LC state and viscoelasticity using digital light processing with a custom LC ink.By utilizing these LC scaffolds as 3D research models,we discovered that LC state mediates high protein clustering to expose accessible RGD motifs to trigger cell-protein interactions and osteogenic differentiation,while viscoelasticity operates via mechanotransduction pathways.Additionally,our investigation revealed a synergistic effect between LC state and viscoelasticity,amplifying cellprotein interactions and osteogenic mechanotransduction processes.Furthermore,the interesting mechanochromic response observed in the LC hydrogel scaffolds suggests their potential application in mechanosensing.Our findings shed light on the mechanisms and synergistic effects of LC state and viscoelasticity in osteoid on osteogenesis,offering valuable insights for the biomimetic design of bone repair scaffolds.展开更多
Digital light processing(DLP)of structurally complex poly(ethylene glycol)(PEG)hydrogels with high mechanical toughness represents a long-standing challenge in thefield of 3D printing.Here,we report a 3D printing appro...Digital light processing(DLP)of structurally complex poly(ethylene glycol)(PEG)hydrogels with high mechanical toughness represents a long-standing challenge in thefield of 3D printing.Here,we report a 3D printing approach for the high-resolution manufacturing of structurally complex and mechanically strong PEG hydrogels via heat-assisted DLP.Instead of using aqueous solutions of photo-crosslinkable monomers,PEG macromonomer melts werefirst printed in the absence of water,resulting in bulk PEG networks.Then,post-printing swelling of the printed networks was achieved in water,producing high-fidelity 3D hydrogels with complex structures.By employing a dual-macromonomer resin containing a PEG-based four-arm macrophotoinitiator,“all-PEG”hydrogel constructs were pro-duced with compressive toughness up to 1.3 MJ m^(-3).By this approach,porous 3D hydrogel scaffolds with trabecular-like architecture were fabricated,and the scaf-fold surface supported cell attachment and the formation of a monolayer mimicking bone-lining cells.This study highlights the promises of heat-assisted DLP of PEG photopolymers for hydrogel fabrication,which may accelerate the development of 3D tissue-like constructs for regenerative medicine.展开更多
基金National Science Centre Poland(NCN),Grant/Award Number:2020/37/B/ST8/02167European Union’s Horizon 2020 research and innovation program,Grant/Award Number:813786+2 种基金National Institutes of Health,Grant/Award Number:R21EB025270National Science Foundation,Grant/Award Number:CBET-EBMS-1936105Brigham Research Institute。
文摘Three-dimensional(3D)printing is an emerging technique that has shown promising success in engineering human tissues in recent years.Further development of vatphotopolymerization printing modalities has significantly enhanced the complexity level for 3D printing of various functional structures and components.Similarly,the development of microfluidic chip systems is an emerging research sector with promising medical applications.This work demonstrates the coupling of a digital light processing(DLP)printing procedure with a microfluidic chip system to produce size-tunable,3D-printable porosities with narrow pore size distributions within a gelatin methacryloyl(GelMA)hydrogel matrix.It is found that the generation of size-tunable gas bubbles trapped within an aqueous GelMA hydrogel-precursor can be controlled with high precision.Furthermore,the porosities are printed in two-dimensional(2D)as well as in 3D using the DLP printer.In addition,the cytocompatibility of the printed porous scaffolds is investigated using fibroblasts,where high cell viabilities as well as cell proliferation,spreading,and migration are confirmed.It is anticipated that the strategy is widely applicable in a range of application areas such as tissue engineering and regenerative medicine,among others.
基金the National Natural Science Foundation of China(Nos.11572002 and 12002032)the China Postdoctoral Science Foundation(Nos.BX20200056 and 2020M670149)。
文摘The soft robotics display huge advantages over their rigid counterparts when interacting with living organisms and fragile objects.As one of the most efficient actuators toward soft robotics,the soft pneumatic actuator(SPA)can produce large,complex responses with utilizing pressure as the only input source.In this work,a new approach that combines digital light processing(DLP)and injection-assisted post-curing is proposed to create SPAs that can realize different functionalities.To enable this,we develop a new class of photo-cross linked elastomers with tunable mechanical properties,good stretchability,and rapid curing speed.By carefully designing the geometry of the cavities embedded in the actuators,the resulting actuators can realize contracting,expanding,flapping,and twisting motions.In addition,we successfully fabricate a soft self-sensing bending actuator by injecting conductive liquids into the three-dimensional(3D)printed actuator,demonstrating that the present method has the potential to be used to manufacture intelligent soft robotic systems.
基金Project (No. M603034) supported by the Natural Science Foundationof Zhejiang Province, China
文摘Conventional color-printing systems often use inks of three hues, such as CMY, CMYK and CMYKLcLm, but in order to obtain more realistic color reproductions, the ink set of more than three hues has been adopted by some color-printing systems. It is difficult, however, to model the composed color with the multiple inks when the number of the output ink hues exceeds three due to the none-unique mapping between the color spaces of the CIE Lab and the multi-color printing device. In this paper, we propose a fine color-printing method for multi-color printing device with the ink set of more than three hues. The proposed approach has good color expression ability and provides fine control of the printed color. By dividing the output color space into several subspaces, our method allows one-to-one mapping between the standard color space and the multi-color output color space. It has been proved effective when applied to the digital inkjet printer—Mutoh8000.
基金the National Key R&D Program of China(2017YFB1103500,2017YFB1103502).
文摘High performance hydroxyapatite(HA)ceramics with excellent densification and mechanical properties were successfully fabricated by digital light processing(DLP)three-dimensional(3D)printing technology.It was found that the sintering atmosphere of wet C02 can dramatically improve the densification process and thus lead to better mechanical properties.HA ceramics with a relative density of 97.12%and a three-point bending strength of 92.4 MPa can be achieved at a sintering temperature of 1300℃,which makes a solid foundation for application in bone engineering.Furthermore,a relatively high compressive strength of 4.09 MPa can be also achieved for a DLP-printed p-cell triply periodic minimum surface(TPMS)structure with a porosity of 74%,which meets the requirement of cancellous bone substitutes.A further cell proliferation test demonstrated that the sintering atmosphere of wet CO2 led to improve cell vitality after 7 days of cell culture Moreover,with the possible benefit from the bio-inspired structure,the 3D-printed TPMS structure significantly improved the cell vitality,which is crucial for early osteogenesis and osteointegration.
文摘A polymer based horizontal single step waveguide fbr the sensing of alcohol is developed and analyzed.The waveguide is fabricated by 3-dimensional(3D)printing digital light processing(DLP)technology using monocure 3D rapid ultraviolet(UV)clear resin with a refractive index of n=1.50.The fabricated waveguide is a one-piece tower shaped ridge structure.It is designed to achieve the maximum light confinement at the core by reducing the effective refractive index around the cladding region.With the surface roughness generated from the 3D printing DLP technology,various waveguides with different gap sizes are printed.Comparison is done fbr the different gap waveguides to achieve the minimum feature gap size utilizing the light re-coupling principle and polymer swelling effect.This effect occurs due to the polymer-alcohol interaction that results in the diffusion of alcohol molecules inside the core of the waveguide,thus changing the waveguide from the leaky type(without alcohol)to the guided type(with alcohol).Using this principle,the analysis of alcohol concentration performing as a larger increase in the transmitted light in tensity can be measured.In this work,the sensitivity of the system is also compared and analyzed fbr different waveguide gap sizes with different concentrations of isopropanol alcohol(IPA).A waveguide gap size of 300 jim gives the highest in crease in the transmitted optical power of 65%when tested with 10μL(500ppm)concentration of IPA.Compared with all other gaps,it also displays faster response time(/=5seconds)fbr the optical power to change right after depositing IPA in the chamber.The measured limit of detection(LOD)achieved fbr 300μm is 0.366 yL.In addition,the fabricated waveguide gap of 300μm successfully demonstrates the sen sing limit of IPA concentration below 400μpm which is considered as an exposure limit by"National Institute for Occupational Safety and Health".All the mechanical mount and the alignments are done by 3D printing fused deposition method(FDM).
基金supported by the National Natural Science Foundation of China(31771047)Guangdong Provincial Natural Science Foundation of China(2022A1515010592and 2023A1515010107)+2 种基金Guangdong Provincial Key Areas R&D Programs(2022B1111080007)the Key Areas Research and Development Program of Guangzhou(202103030003)the Outstanding Innovative Talents Cultivation Funded Programs for Doctoral Students of Jinan University(2023CXB013).
文摘Osteoid plays a crucial role in directing cell behavior and osteogenesis through its unique characteristics,including viscoelasticity and liquid crystal(LC)state.Thus,integrating osteoid-like features into 3D printing scaffolds proves to be a promising approach for personalized bone repair.Despite extensive research on viscoelasticity,the role of LC state in bone repair has been largely overlooked due to the scarcity of suitable LC materials.Moreover,the intricate interplay between LC state and viscoelasticity in osteogenesis remains poorly understood.Here,we developed innovative hydrogel scaffolds with osteoid-like LC state and viscoelasticity using digital light processing with a custom LC ink.By utilizing these LC scaffolds as 3D research models,we discovered that LC state mediates high protein clustering to expose accessible RGD motifs to trigger cell-protein interactions and osteogenic differentiation,while viscoelasticity operates via mechanotransduction pathways.Additionally,our investigation revealed a synergistic effect between LC state and viscoelasticity,amplifying cellprotein interactions and osteogenic mechanotransduction processes.Furthermore,the interesting mechanochromic response observed in the LC hydrogel scaffolds suggests their potential application in mechanosensing.Our findings shed light on the mechanisms and synergistic effects of LC state and viscoelasticity in osteoid on osteogenesis,offering valuable insights for the biomimetic design of bone repair scaffolds.
基金financial support(Sinergia No.177178 and research project No.315230_197644/1)financial support from the Swiss National Science Foundation(No.190345,188522 and 206501)financial support from China Scholarship Council(CSC,No.202006790027).
文摘Digital light processing(DLP)of structurally complex poly(ethylene glycol)(PEG)hydrogels with high mechanical toughness represents a long-standing challenge in thefield of 3D printing.Here,we report a 3D printing approach for the high-resolution manufacturing of structurally complex and mechanically strong PEG hydrogels via heat-assisted DLP.Instead of using aqueous solutions of photo-crosslinkable monomers,PEG macromonomer melts werefirst printed in the absence of water,resulting in bulk PEG networks.Then,post-printing swelling of the printed networks was achieved in water,producing high-fidelity 3D hydrogels with complex structures.By employing a dual-macromonomer resin containing a PEG-based four-arm macrophotoinitiator,“all-PEG”hydrogel constructs were pro-duced with compressive toughness up to 1.3 MJ m^(-3).By this approach,porous 3D hydrogel scaffolds with trabecular-like architecture were fabricated,and the scaf-fold surface supported cell attachment and the formation of a monolayer mimicking bone-lining cells.This study highlights the promises of heat-assisted DLP of PEG photopolymers for hydrogel fabrication,which may accelerate the development of 3D tissue-like constructs for regenerative medicine.