Anemia is a blood abnormality that affects the quantity and quality of red blood cells in the human body. This sometimes banal sign spares no continent and no social stratum. This anomaly is generally appreciated thro...Anemia is a blood abnormality that affects the quantity and quality of red blood cells in the human body. This sometimes banal sign spares no continent and no social stratum. This anomaly is generally appreciated through biological analyzes of patients</span><span style="font-family:Verdana;">’</span><span style="font-family:Verdana;"> blood. These analyzes, which boil down to the knowledge of hemato-metric constants, cannot by themselves allow the characterization of certain forms of anemia in the sense that most anemia are related to the morphology and color of red blood cells. Our work in this paper is to perform blood smears on patients and perform a morphological and colorimetric analysis of red blood cells on these smears. This approach allowed us to highlight on each erythrocyte morphological and colorimetric descriptors to accurately identify the types of anemia by image processing methods. This identification is performed in an automated environment to allow pathologists to respond quickly to anemia-related emergencies and also improve the treatment to be conducted. This automation required the implementation of a new approach to electronic instrumentation and the acquisition of microscopic blood smear images for the automatic and rapid diagnosis of anemia.展开更多
Threshold decision is an important function of nuclear instrument control system based on physical parameters threshold decision. Because the conventional decision methods lack correlation with time and conditions, by...Threshold decision is an important function of nuclear instrument control system based on physical parameters threshold decision. Because the conventional decision methods lack correlation with time and conditions, by analyzing the existing methods, some optimized methods are adopted. Considering safety, those methods are improved in data processing algorithms, floating threshold with multiple values, association with specific working condition, etc. These measures im- prove the nuclear instrument control system in fault tolerance and fault diagnosis, especially, the shutdown number of nucle- ar power plant decreases.展开更多
Aim To study the parking management in the condition of vehicles' increasing. Methods The methods of pattern recognition and image processing were used to analyze the eigenvalues of parking lot images. Results ...Aim To study the parking management in the condition of vehicles' increasing. Methods The methods of pattern recognition and image processing were used to analyze the eigenvalues of parking lot images. Results The automatic identification of every parking place in the parking plot was realized. The automatic measuring of parked vehicle count and parking lot utilization was completed. Conclusion It can complete the real time recognition, and has some practicabilities.展开更多
A principle and method of constructing the digital acquisition system is presented in this work,which is convenient for the study on the theories and algorithms of digital nuclear signal processing.The hardware system...A principle and method of constructing the digital acquisition system is presented in this work,which is convenient for the study on the theories and algorithms of digital nuclear signal processing.The hardware system of the digital acquisition system consists of front-end controller,waveform digitizer and PC workstation,on which the software system has been developed based on Visual C++under Windows environment.The alterable-frequency sampling(AFS)algorithm and the alterable-frequency trapezoidal filter(AFTF)algorithm have also been studied in the real-time environment,along with a digital nuclear spectrum acquisition system being set up based on the new algorithms and theγ-ray spectra of 241Am being shown.A useful experimental platform could be provided by this work for the successive work such as the development of global digitized nuclear measurement system and the study of digital nuclear signal processing.展开更多
In this study,we proposed a recognition method based on deep artificial neural networks to identify various elements in pipelines and instrumentation diagrams(P&ID)in image formats,such as symbols,texts,and pipeli...In this study,we proposed a recognition method based on deep artificial neural networks to identify various elements in pipelines and instrumentation diagrams(P&ID)in image formats,such as symbols,texts,and pipelines.Presently,the P&ID image format is recognized manually,and there is a problem with a high recognition error rate;therefore,automation of the above process is an important issue in the processing plant industry.The China National Offshore Petrochemical Engineering Co.provided the image set used in this study,which contains 51 P&ID drawings in the PDF.We converted the PDF P&ID drawings to PNG P&IDs with an image size of 8410×5940.In addition,we used labeling software to annotate the images,divided the dataset into training and test sets in a 3:1 ratio,and deployed a deep neural network for recognition.The method proposed in this study is divided into three steps.The first step segments the images and recognizes symbols using YOLOv5+SE.The second step determines text regions using character region awareness for text detection,and performs character recognition within the text region using the optical character recognition technique.The third step is pipeline recognition using YOLOv5+SE.The symbol recognition accuracy was 94.52%,and the recall rate was 93.27%.The recognition accuracy in the text positioning stage was 97.26%and the recall rate was 90.27%.The recognition accuracy in the character recognition stage was 90.03%and the recall rate was 91.87%.The pipeline identification accuracy was 92.9%,and the recall rate was 90.36%.展开更多
Suppressing the interference of atmospheric turbulence and obtaining observation data with a high spatial resolution are an issue to be solved urgently for ground observations. One way to solve this problem is to perf...Suppressing the interference of atmospheric turbulence and obtaining observation data with a high spatial resolution are an issue to be solved urgently for ground observations. One way to solve this problem is to perform a statistical reconstruction of short-exposure speckle images. Combining the rapidity of Shift-Add and the accuracy of speckle masking, this paper proposes a novel reconstruction algorithm-NASIR(Non-rigid Alignment based Solar Image Reconstruction). NASIR reconstructs the phase of the object image at each frequency by building a computational model between geometric distortion and intensity distribution and reconstructs the modulus of the object image on the aligned speckle images by speckle interferometry. We analyzed the performance of NASIR by using the correlation coefficient, power spectrum, and coefficient of variation of intensity profile in processing data obtained by the NVST(1 m New Vacuum Solar Telescope). The reconstruction experiments and analysis results show that the quality of images reconstructed by NASIR is close to speckle masking when the seeing is good, while NASIR has excellent robustness when the seeing condition becomes worse. Furthermore, NASIR reconstructs the entire field of view in parallel in one go, without phase recursion and block-by-block reconstruction, so its computation time is less than half that of speckle masking. Therefore, we consider NASIR is a robust and highquality fast reconstruction method that can serve as an effective tool for data filtering and quick look.展开更多
The existing terrain models that describe the local lunar surface have limited resolution and accuracy, which can hardly meet the needs of rover navigation,positioning and geological analysis. China launched the lunar...The existing terrain models that describe the local lunar surface have limited resolution and accuracy, which can hardly meet the needs of rover navigation,positioning and geological analysis. China launched the lunar probe Chang'e-3 in December, 2013. Chang'e-3 encompassed a lander and a lunar rover called "Yutu"(Jade Rabbit). A set of panoramic cameras were installed on the rover mast. After acquiring panoramic images of four sites that were explored, the terrain models of the local lunar surface with resolution of 0.02 m were reconstructed. Compared with other data sources, the models derived from Chang'e-3 data were clear and accurate enough that they could be used to plan the route of Yutu.展开更多
The hard X-ray modulation telescope (HXMT) mission is mainly devoted to performing an all-sky survey at 1- 250 keV with both high sensitivity and high spatial resolution. The observed data reduction as well as the i...The hard X-ray modulation telescope (HXMT) mission is mainly devoted to performing an all-sky survey at 1- 250 keV with both high sensitivity and high spatial resolution. The observed data reduction as well as the image reconstruction for HXMT can be achieved by using the direct demodulation method (DDM). However the original DDM is too computationally expensive for multi-dimensional data with high resolution to be employed for HXMT data. We propose an accelerated direct demodulation method especially adapted for data from HXMT. Simulations are also presented to demonstrate this method.展开更多
Depending on the techniques of pattern recognition and image processing, we established a computer analytic system for photocclusal image. The analysing results made by this system are more accurate and reliable than ...Depending on the techniques of pattern recognition and image processing, we established a computer analytic system for photocclusal image. The analysing results made by this system are more accurate and reliable than those by the naked eye and grid for analysing photocclusal image. We analysed photocclusal images for a patient with prematurity of lower first right molar be fore and after occlusal adjustment with the system. The result appeared that occlusal adjustment mainly brought about distributive variation of occlusal stress rather than alteration of absolute value of overall occlusal force.展开更多
The registration of multi-wavelength high-resolution solar images is an important task in the research of solar physics. This paper proposed a coarse-to-fine strategy to realize the accurate registration of high-resol...The registration of multi-wavelength high-resolution solar images is an important task in the research of solar physics. This paper proposed a coarse-to-fine strategy to realize the accurate registration of high-resolution photospheric images and chromospheric images observed by the New Vacuum Solar Telescope(NVST) whose field-of-view is about 2′~ 3′, and the spatial resolution can reach 0.1′′after image reconstruction. In this strategy, the full-disk solar images with relatively lower resolution taken by other space-or ground-based telescopes are taken as transition images, and the Fourier-Merlin transform,Template matching and a local statistical information based algorithm are used in combination. After registration, the geometric transformation between multi-wavelength images of NVST are corrected at the level of sub-arcseconds, including the rotation, scaling and translation relations. Two sets of data observed in active regions(i.e., the NOAA 11982 and the NOAA 12673) are used to illustrate our method step by step.The result shows that the registration accuracy can reach less than 1′′. Moreover, this work also has facilitated the combination of high-resolution observations of NVST with the continuum, ultraviolet passbands and magnetic field observations of the Solar Dynamic Observation(SDO), which is highly beneficial to the multi-instrument joint measurement of solar activities.展开更多
Digital display instrument identification is a crucial approach for automating the collection of digital display data.In this study,we propose a digital display area detection CTPNpro algorithm to address the problem ...Digital display instrument identification is a crucial approach for automating the collection of digital display data.In this study,we propose a digital display area detection CTPNpro algorithm to address the problem of recognizing multiclass digital display instruments.We developed a multiclass digital display instrument recognition algorithm by combining the character recognition network constructed using a convolutional neural network and bidirectional variable-length long short-term memory(LSTM).First,the digital display region detection CTPNpro network framework was designed based on the CTPN network architecture by introducing feature fusion and residual structure.Next,the digital display instrument identification network was constructed based on a convolutional neural network using twoway LSTM and Connectionist temporal classification(CTC)of indefinite length.Finally,an automatic calibration system for digital display instruments was built,and a multiclass digital display instrument dataset was constructed by sampling in the system.We compared the performance of the CTPNpro algorithm with other methods using this dataset to validate the effectiveness and robustness of the proposed algorithm.展开更多
We tested a new model of CMOS detector manufactured by the Gpixel Inc,for potential space astronomical application.In laboratory,we obtain some bias images under the typical application environment.In these bias image...We tested a new model of CMOS detector manufactured by the Gpixel Inc,for potential space astronomical application.In laboratory,we obtain some bias images under the typical application environment.In these bias images,clear random row noise pattern is observed.The row noise also contains some characteristic spatial frequencies.We quantitatively estimated the impact of this feature to photometric measurements,by making simulated images.We compared different bias noise types under strict parameter control.The result shows the row noise will significantly deteriorate the photometric accuracy.It effectively increases the readout noise by a factor of2-10.However,if it is properly removed,the image quality and photometric accuracy will be significantly improved.展开更多
The image quality of a large field survey telescope with a fast focal ratio of the primary mirror is high sensitivity to the optical elements’misalignments and the primary mirror’s deformations.To maintain good opti...The image quality of a large field survey telescope with a fast focal ratio of the primary mirror is high sensitivity to the optical elements’misalignments and the primary mirror’s deformations.To maintain good optical performance,the perturbations need to be aligned,and the tomographic reconstruction of these perturbations can be derived from wavefront sensing with multi-field points for alignment.This work undertakes a comprehensive examination related to the implementation and optimization of a multi-field split curvature wavefront sensing system,including defocus distance,signal pre-processing,deblending of overlapped doughnuts,field-dependent correction,and distorted coordinate correction.We also conduct experiments to demonstrate the application and performance of a multi-field split curvature wavefront sensing system in Mephisto.In the context of the decentering of the secondary mirror,the coefficient of determination(R)attains a high value of 0.993,indicating a robust linearity between the coma coefficients and the decentering of the secondary mirror.A comparative analysis of the simulated and experimental results shows that the difference between them is less than 0.1λ.展开更多
文摘Anemia is a blood abnormality that affects the quantity and quality of red blood cells in the human body. This sometimes banal sign spares no continent and no social stratum. This anomaly is generally appreciated through biological analyzes of patients</span><span style="font-family:Verdana;">’</span><span style="font-family:Verdana;"> blood. These analyzes, which boil down to the knowledge of hemato-metric constants, cannot by themselves allow the characterization of certain forms of anemia in the sense that most anemia are related to the morphology and color of red blood cells. Our work in this paper is to perform blood smears on patients and perform a morphological and colorimetric analysis of red blood cells on these smears. This approach allowed us to highlight on each erythrocyte morphological and colorimetric descriptors to accurately identify the types of anemia by image processing methods. This identification is performed in an automated environment to allow pathologists to respond quickly to anemia-related emergencies and also improve the treatment to be conducted. This automation required the implementation of a new approach to electronic instrumentation and the acquisition of microscopic blood smear images for the automatic and rapid diagnosis of anemia.
基金Research Project of Hunan Province Education Department(No.14C0972)
文摘Threshold decision is an important function of nuclear instrument control system based on physical parameters threshold decision. Because the conventional decision methods lack correlation with time and conditions, by analyzing the existing methods, some optimized methods are adopted. Considering safety, those methods are improved in data processing algorithms, floating threshold with multiple values, association with specific working condition, etc. These measures im- prove the nuclear instrument control system in fault tolerance and fault diagnosis, especially, the shutdown number of nucle- ar power plant decreases.
文摘Aim To study the parking management in the condition of vehicles' increasing. Methods The methods of pattern recognition and image processing were used to analyze the eigenvalues of parking lot images. Results The automatic identification of every parking place in the parking plot was realized. The automatic measuring of parked vehicle count and parking lot utilization was completed. Conclusion It can complete the real time recognition, and has some practicabilities.
基金Supported by National Natural Science Foundation of China(NSFC)projects(No.1075111)
文摘A principle and method of constructing the digital acquisition system is presented in this work,which is convenient for the study on the theories and algorithms of digital nuclear signal processing.The hardware system of the digital acquisition system consists of front-end controller,waveform digitizer and PC workstation,on which the software system has been developed based on Visual C++under Windows environment.The alterable-frequency sampling(AFS)algorithm and the alterable-frequency trapezoidal filter(AFTF)algorithm have also been studied in the real-time environment,along with a digital nuclear spectrum acquisition system being set up based on the new algorithms and theγ-ray spectra of 241Am being shown.A useful experimental platform could be provided by this work for the successive work such as the development of global digitized nuclear measurement system and the study of digital nuclear signal processing.
文摘In this study,we proposed a recognition method based on deep artificial neural networks to identify various elements in pipelines and instrumentation diagrams(P&ID)in image formats,such as symbols,texts,and pipelines.Presently,the P&ID image format is recognized manually,and there is a problem with a high recognition error rate;therefore,automation of the above process is an important issue in the processing plant industry.The China National Offshore Petrochemical Engineering Co.provided the image set used in this study,which contains 51 P&ID drawings in the PDF.We converted the PDF P&ID drawings to PNG P&IDs with an image size of 8410×5940.In addition,we used labeling software to annotate the images,divided the dataset into training and test sets in a 3:1 ratio,and deployed a deep neural network for recognition.The method proposed in this study is divided into three steps.The first step segments the images and recognizes symbols using YOLOv5+SE.The second step determines text regions using character region awareness for text detection,and performs character recognition within the text region using the optical character recognition technique.The third step is pipeline recognition using YOLOv5+SE.The symbol recognition accuracy was 94.52%,and the recall rate was 93.27%.The recognition accuracy in the text positioning stage was 97.26%and the recall rate was 90.27%.The recognition accuracy in the character recognition stage was 90.03%and the recall rate was 91.87%.The pipeline identification accuracy was 92.9%,and the recall rate was 90.36%.
基金sponsored by the National Natural Science Foundation of China (NSFC) under Grant Nos.11873027, U2031140, 12073077, 11833010 and 11973088West Light Foundation of the Chinese Academy of Sciences (Y9XB01A and Y9XB019)。
文摘Suppressing the interference of atmospheric turbulence and obtaining observation data with a high spatial resolution are an issue to be solved urgently for ground observations. One way to solve this problem is to perform a statistical reconstruction of short-exposure speckle images. Combining the rapidity of Shift-Add and the accuracy of speckle masking, this paper proposes a novel reconstruction algorithm-NASIR(Non-rigid Alignment based Solar Image Reconstruction). NASIR reconstructs the phase of the object image at each frequency by building a computational model between geometric distortion and intensity distribution and reconstructs the modulus of the object image on the aligned speckle images by speckle interferometry. We analyzed the performance of NASIR by using the correlation coefficient, power spectrum, and coefficient of variation of intensity profile in processing data obtained by the NVST(1 m New Vacuum Solar Telescope). The reconstruction experiments and analysis results show that the quality of images reconstructed by NASIR is close to speckle masking when the seeing is good, while NASIR has excellent robustness when the seeing condition becomes worse. Furthermore, NASIR reconstructs the entire field of view in parallel in one go, without phase recursion and block-by-block reconstruction, so its computation time is less than half that of speckle masking. Therefore, we consider NASIR is a robust and highquality fast reconstruction method that can serve as an effective tool for data filtering and quick look.
基金Supported by the National Natural Science Foundation of China
文摘The existing terrain models that describe the local lunar surface have limited resolution and accuracy, which can hardly meet the needs of rover navigation,positioning and geological analysis. China launched the lunar probe Chang'e-3 in December, 2013. Chang'e-3 encompassed a lander and a lunar rover called "Yutu"(Jade Rabbit). A set of panoramic cameras were installed on the rover mast. After acquiring panoramic images of four sites that were explored, the terrain models of the local lunar surface with resolution of 0.02 m were reconstructed. Compared with other data sources, the models derived from Chang'e-3 data were clear and accurate enough that they could be used to plan the route of Yutu.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11173038 and 11103022)the Tsinghua University Initiative Scientific Research Program (Grant No. 20111081102)
文摘The hard X-ray modulation telescope (HXMT) mission is mainly devoted to performing an all-sky survey at 1- 250 keV with both high sensitivity and high spatial resolution. The observed data reduction as well as the image reconstruction for HXMT can be achieved by using the direct demodulation method (DDM). However the original DDM is too computationally expensive for multi-dimensional data with high resolution to be employed for HXMT data. We propose an accelerated direct demodulation method especially adapted for data from HXMT. Simulations are also presented to demonstrate this method.
文摘Depending on the techniques of pattern recognition and image processing, we established a computer analytic system for photocclusal image. The analysing results made by this system are more accurate and reliable than those by the naked eye and grid for analysing photocclusal image. We analysed photocclusal images for a patient with prematurity of lower first right molar be fore and after occlusal adjustment with the system. The result appeared that occlusal adjustment mainly brought about distributive variation of occlusal stress rather than alteration of absolute value of overall occlusal force.
基金funded by the National Natural Science Foundation of China(NSFC,Grant Nos.11873091 and 61902302)Basic Research on Fund Projects in Yunnan Province(2019FA001)the PhD Scientific Research Start-up Foundation of Xi’an Polytechnic University(107020389)。
文摘The registration of multi-wavelength high-resolution solar images is an important task in the research of solar physics. This paper proposed a coarse-to-fine strategy to realize the accurate registration of high-resolution photospheric images and chromospheric images observed by the New Vacuum Solar Telescope(NVST) whose field-of-view is about 2′~ 3′, and the spatial resolution can reach 0.1′′after image reconstruction. In this strategy, the full-disk solar images with relatively lower resolution taken by other space-or ground-based telescopes are taken as transition images, and the Fourier-Merlin transform,Template matching and a local statistical information based algorithm are used in combination. After registration, the geometric transformation between multi-wavelength images of NVST are corrected at the level of sub-arcseconds, including the rotation, scaling and translation relations. Two sets of data observed in active regions(i.e., the NOAA 11982 and the NOAA 12673) are used to illustrate our method step by step.The result shows that the registration accuracy can reach less than 1′′. Moreover, this work also has facilitated the combination of high-resolution observations of NVST with the continuum, ultraviolet passbands and magnetic field observations of the Solar Dynamic Observation(SDO), which is highly beneficial to the multi-instrument joint measurement of solar activities.
基金supported by the National Key R&D Program of China(2022YFB4701502)the“Leading Goose”R&D Program of Zhejiang(2023C01177)+1 种基金the Key Research Project of Zhejiang Lab(2021NB0AL03)the Key R&D Project on Agriculture and Social Development in Hangzhou City(Asian Games)(20230701 A05).
文摘Digital display instrument identification is a crucial approach for automating the collection of digital display data.In this study,we propose a digital display area detection CTPNpro algorithm to address the problem of recognizing multiclass digital display instruments.We developed a multiclass digital display instrument recognition algorithm by combining the character recognition network constructed using a convolutional neural network and bidirectional variable-length long short-term memory(LSTM).First,the digital display region detection CTPNpro network framework was designed based on the CTPN network architecture by introducing feature fusion and residual structure.Next,the digital display instrument identification network was constructed based on a convolutional neural network using twoway LSTM and Connectionist temporal classification(CTC)of indefinite length.Finally,an automatic calibration system for digital display instruments was built,and a multiclass digital display instrument dataset was constructed by sampling in the system.We compared the performance of the CTPNpro algorithm with other methods using this dataset to validate the effectiveness and robustness of the proposed algorithm.
基金support by the National Key R&D Program of China No.2022YFF0503400。
文摘We tested a new model of CMOS detector manufactured by the Gpixel Inc,for potential space astronomical application.In laboratory,we obtain some bias images under the typical application environment.In these bias images,clear random row noise pattern is observed.The row noise also contains some characteristic spatial frequencies.We quantitatively estimated the impact of this feature to photometric measurements,by making simulated images.We compared different bias noise types under strict parameter control.The result shows the row noise will significantly deteriorate the photometric accuracy.It effectively increases the readout noise by a factor of2-10.However,if it is properly removed,the image quality and photometric accuracy will be significantly improved.
基金supported by the National Natural Science Foundation of China(grant No.12173062)。
文摘The image quality of a large field survey telescope with a fast focal ratio of the primary mirror is high sensitivity to the optical elements’misalignments and the primary mirror’s deformations.To maintain good optical performance,the perturbations need to be aligned,and the tomographic reconstruction of these perturbations can be derived from wavefront sensing with multi-field points for alignment.This work undertakes a comprehensive examination related to the implementation and optimization of a multi-field split curvature wavefront sensing system,including defocus distance,signal pre-processing,deblending of overlapped doughnuts,field-dependent correction,and distorted coordinate correction.We also conduct experiments to demonstrate the application and performance of a multi-field split curvature wavefront sensing system in Mephisto.In the context of the decentering of the secondary mirror,the coefficient of determination(R)attains a high value of 0.993,indicating a robust linearity between the coma coefficients and the decentering of the secondary mirror.A comparative analysis of the simulated and experimental results shows that the difference between them is less than 0.1λ.