期刊文献+
共找到2,906篇文章
< 1 2 146 >
每页显示 20 50 100
Innovation and Practice of Teaching Methods in Digital and Adaptive Learning:Taking Communication Engineering Major as an Example
1
作者 Xixi Fu Kun Zhang +2 位作者 Xiaomin Jiang Xueya Xia Qian Gao 《Journal of Contemporary Educational Research》 2024年第9期32-39,共8页
This paper proposes teaching reforms in communication engineering majors,emphasizing the implementation of digital and adaptive teaching methodologies,integrating emerging technologies,breaking free from the constrain... This paper proposes teaching reforms in communication engineering majors,emphasizing the implementation of digital and adaptive teaching methodologies,integrating emerging technologies,breaking free from the constraints of traditional education,and fostering high-caliber talents.The reform measures encompass fundamental data collection,recognition of individual characteristics,recommendation of adaptive learning resources,process-oriented teaching management,adaptive student guidance and early warning systems,personalized evaluation,and the construction of an integrated service platform.These measures,when combined,form a comprehensive system that is expected to enhance teaching quality and efficiency,and facilitate student development. 展开更多
关键词 digital learning Adaptive learning Communication Engineering Teaching reform Talent cultivation Integrated service platform
下载PDF
A survey on blockchain-enabled federated learning and its prospects with digital twin
2
作者 Kangde Liu Zheng Yan +2 位作者 Xueqin Liang Raimo Kantola Chuangyue Hu 《Digital Communications and Networks》 SCIE CSCD 2024年第2期248-264,共17页
Digital Twin(DT)supports real time analysis and provides a reliable simulation platform in the Internet of Things(IoT).The creation and application of DT hinges on amounts of data,which poses pressure on the applicati... Digital Twin(DT)supports real time analysis and provides a reliable simulation platform in the Internet of Things(IoT).The creation and application of DT hinges on amounts of data,which poses pressure on the application of Artificial Intelligence(AI)for DT descriptions and intelligent decision-making.Federated Learning(FL)is a cutting-edge technology that enables geographically dispersed devices to collaboratively train a shared global model locally rather than relying on a data center to perform model training.Therefore,DT can benefit by combining with FL,successfully solving the"data island"problem in traditional AI.However,FL still faces serious challenges,such as enduring single-point failures,suffering from poison attacks,lacking effective incentive mechanisms.Before the successful deployment of DT,we should tackle the issues caused by FL.Researchers from industry and academia have recognized the potential of introducing Blockchain Technology(BT)into FL to overcome the challenges faced by FL,where BT acting as a distributed and immutable ledger,can store data in a secure,traceable,and trusted manner.However,to the best of our knowledge,a comprehensive literature review on this topic is still missing.In this paper,we review existing works about blockchain-enabled FL and visualize their prospects with DT.To this end,we first propose evaluation requirements with respect to security,faulttolerance,fairness,efficiency,cost-saving,profitability,and support for heterogeneity.Then,we classify existing literature according to the functionalities of BT in FL and analyze their advantages and disadvantages based on the proposed evaluation requirements.Finally,we discuss open problems in the existing literature and the future of DT supported by blockchain-enabled FL,based on which we further propose some directions for future research. 展开更多
关键词 digital twin Artificial intelligence Federated learning Blockchain
下载PDF
Unleashing the Power of Multi-Agent Reinforcement Learning for Algorithmic Trading in the Digital Financial Frontier and Enterprise Information Systems
3
作者 Saket Sarin Sunil K.Singh +4 位作者 Sudhakar Kumar Shivam Goyal Brij Bhooshan Gupta Wadee Alhalabi Varsha Arya 《Computers, Materials & Continua》 SCIE EI 2024年第8期3123-3138,共16页
In the rapidly evolving landscape of today’s digital economy,Financial Technology(Fintech)emerges as a trans-formative force,propelled by the dynamic synergy between Artificial Intelligence(AI)and Algorithmic Trading... In the rapidly evolving landscape of today’s digital economy,Financial Technology(Fintech)emerges as a trans-formative force,propelled by the dynamic synergy between Artificial Intelligence(AI)and Algorithmic Trading.Our in-depth investigation delves into the intricacies of merging Multi-Agent Reinforcement Learning(MARL)and Explainable AI(XAI)within Fintech,aiming to refine Algorithmic Trading strategies.Through meticulous examination,we uncover the nuanced interactions of AI-driven agents as they collaborate and compete within the financial realm,employing sophisticated deep learning techniques to enhance the clarity and adaptability of trading decisions.These AI-infused Fintech platforms harness collective intelligence to unearth trends,mitigate risks,and provide tailored financial guidance,fostering benefits for individuals and enterprises navigating the digital landscape.Our research holds the potential to revolutionize finance,opening doors to fresh avenues for investment and asset management in the digital age.Additionally,our statistical evaluation yields encouraging results,with metrics such as Accuracy=0.85,Precision=0.88,and F1 Score=0.86,reaffirming the efficacy of our approach within Fintech and emphasizing its reliability and innovative prowess. 展开更多
关键词 Neurodynamic Fintech multi-agent reinforcement learning algorithmic trading digital financial frontier
下载PDF
A digital twins enabled underwater intelligent internet vehicle path planning system via reinforcement learning and edge computing
4
作者 Jiachen Yang Meng Xi +2 位作者 Jiabao Wen Yang Li Houbing Herbert Song 《Digital Communications and Networks》 SCIE CSCD 2024年第2期282-291,共10页
The Autonomous Underwater Glider(AUG)is a kind of prevailing underwater intelligent internet vehicle and occupies a dominant position in industrial applications,in which path planning is an essential problem.Due to th... The Autonomous Underwater Glider(AUG)is a kind of prevailing underwater intelligent internet vehicle and occupies a dominant position in industrial applications,in which path planning is an essential problem.Due to the complexity and variability of the ocean,accurate environment modeling and flexible path planning algorithms are pivotal challenges.The traditional models mainly utilize mathematical functions,which are not complete and reliable.Most existing path planning algorithms depend on the environment and lack flexibility.To overcome these challenges,we propose a path planning system for underwater intelligent internet vehicles.It applies digital twins and sensor data to map the real ocean environment to a virtual digital space,which provides a comprehensive and reliable environment for path simulation.We design a value-based reinforcement learning path planning algorithm and explore the optimal network structure parameters.The path simulation is controlled by a closed-loop model integrated into the terminal vehicle through edge computing.The integration of state input enriches the learning of neural networks and helps to improve generalization and flexibility.The task-related reward function promotes the rapid convergence of the training.The experimental results prove that our reinforcement learning based path planning algorithm has great flexibility and can effectively adapt to a variety of different ocean conditions. 展开更多
关键词 digital twins Reinforcement learning Edge computing Underwater intelligent internet vehicle Path planning
下载PDF
Digital Twin-Assisted Semi-Federated Learning Framework for Industrial Edge Intelligence
5
作者 Wu Xiongyue Tang Jianhua Marie Siew 《China Communications》 SCIE CSCD 2024年第5期314-329,共16页
The rapid development of emerging technologies,such as edge intelligence and digital twins,have added momentum towards the development of the Industrial Internet of Things(IIo T).However,the massive amount of data gen... The rapid development of emerging technologies,such as edge intelligence and digital twins,have added momentum towards the development of the Industrial Internet of Things(IIo T).However,the massive amount of data generated by the IIo T,coupled with heterogeneous computation capacity across IIo T devices,and users’data privacy concerns,have posed challenges towards achieving industrial edge intelligence(IEI).To achieve IEI,in this paper,we propose a semi-federated learning framework where a portion of the data with higher privacy is kept locally and a portion of the less private data can be potentially uploaded to the edge server.In addition,we leverage digital twins to overcome the problem of computation capacity heterogeneity of IIo T devices through the mapping of physical entities.We formulate a synchronization latency minimization problem which jointly optimizes edge association and the proportion of uploaded nonprivate data.As the joint problem is NP-hard and combinatorial and taking into account the reality of largescale device training,we develop a multi-agent hybrid action deep reinforcement learning(DRL)algorithm to find the optimal solution.Simulation results show that our proposed DRL algorithm can reduce latency and have a better convergence performance for semi-federated learning compared to benchmark algorithms. 展开更多
关键词 digital twin edge association industrial edge intelligence(IEI) semi-federated learning
下载PDF
Enhancing Secure Development in Globally Distributed Software Product Lines: A Machine Learning-Powered Framework for Cyber-Resilient Ecosystems
6
作者 Marya Iqbal Yaser Hafeez +5 位作者 Nabil Almashfi Amjad Alsirhani Faeiz Alserhani Sadia Ali Mamoona Humayun Muhammad Jamal 《Computers, Materials & Continua》 SCIE EI 2024年第6期5031-5049,共19页
Embracing software product lines(SPLs)is pivotal in the dynamic landscape of contemporary software devel-opment.However,the flexibility and global distribution inherent in modern systems pose significant challenges to... Embracing software product lines(SPLs)is pivotal in the dynamic landscape of contemporary software devel-opment.However,the flexibility and global distribution inherent in modern systems pose significant challenges to managing SPL variability,underscoring the critical importance of robust cybersecurity measures.This paper advocates for leveraging machine learning(ML)to address variability management issues and fortify the security of SPL.In the context of the broader special issue theme on innovative cybersecurity approaches,our proposed ML-based framework offers an interdisciplinary perspective,blending insights from computing,social sciences,and business.Specifically,it employs ML for demand analysis,dynamic feature extraction,and enhanced feature selection in distributed settings,contributing to cyber-resilient ecosystems.Our experiments demonstrate the framework’s superiority,emphasizing its potential to boost productivity and security in SPLs.As digital threats evolve,this research catalyzes interdisciplinary collaborations,aligning with the special issue’s goal of breaking down academic barriers to strengthen digital ecosystems against sophisticated attacks while upholding ethics,privacy,and human values. 展开更多
关键词 Machine learning variability management CYBERSECURITY digital ecosystems cyber-resilience
下载PDF
Ab Initio Design of Ni-Rich Cathode Material with Assistance of Machine Learning for High Energy Lithium-Ion Batteries
7
作者 Xinyu Zhang Daobin Mu +6 位作者 Shijie Lu Yuanxing Zhang Yuxiang Zhang Zhuolin Yang Zhikun Zhao Borong Wu Feng Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期74-83,共10页
With the widespread use of lithium-ion batteries in electric vehicles,energy storage,and mobile terminals,there is an urgent need to develop cathode materials with specific properties.However,existing material control... With the widespread use of lithium-ion batteries in electric vehicles,energy storage,and mobile terminals,there is an urgent need to develop cathode materials with specific properties.However,existing material control synthesis routes based on repetitive experiments are often costly and inefficient,which is unsuitable for the broader application of novel materials.The development of machine learning and its combination with materials design offers a potential pathway for optimizing materials.Here,we present a design synthesis paradigm for developing high energy Ni-rich cathodes with thermal/kinetic simulation and propose a coupled image-morphology machine learning model.The paradigm can accurately predict the reaction conditions required for synthesizing cathode precursors with specific morphologies,helping to shorten the experimental duration and costs.After the model-guided design synthesis,cathode materials with different morphological characteristics can be obtained,and the best shows a high discharge capacity of 206 mAh g^(−1)at 0.1C and 83%capacity retention after 200 cycles.This work provides guidance for designing cathode materials for lithium-ion batteries,which may point the way to a fast and cost-effective direction for controlling the morphology of all types of particles. 展开更多
关键词 DESIGN digital image lithium-ion batteries machine learning NCM cathode
下载PDF
Rapid detection and risk assessment of soil contamination at lead smelting site based on machine learning
8
作者 Sheng-guo XUE Jing-pei FENG +5 位作者 Wen-shun KE Mu LI Kun-yan QIU Chu-xuan LI Chuan WU Lin GUO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期3054-3068,共15页
A general prediction model for seven heavy metals was established using the heavy metal contents of 207soil samples measured by a portable X-ray fluorescence spectrometer(XRF)and six environmental factors as model cor... A general prediction model for seven heavy metals was established using the heavy metal contents of 207soil samples measured by a portable X-ray fluorescence spectrometer(XRF)and six environmental factors as model correction coefficients.The eXtreme Gradient Boosting(XGBoost)model was used to fit the relationship between the content of heavy metals and environment characteristics to evaluate the soil ecological risk of the smelting site.The results demonstrated that the generalized prediction model developed for Pb,Cd,and As was highly accurate with fitted coefficients(R~2)values of 0.911,0.950,and 0.835,respectively.Topsoil presented the highest ecological risk,and there existed high potential ecological risk at some positions with different depths due to high mobility of Cd.Generally,the application of machine learning significantly increased the accuracy of pXRF measurements,and identified key environmental factors.The adapted potential ecological risk assessment emphasized the need to focus on Pb,Cd,and As in future site remediation efforts. 展开更多
关键词 smelting site potentially toxic elements X-ray fluorescence potential ecological risk machine learning
下载PDF
Dynamic Task Offloading for Digital Twin-Empowered Mobile Edge Computing via Deep Reinforcement Learning 被引量:2
9
作者 Ying Chen Wei Gu +2 位作者 Jiajie Xu Yongchao Zhang Geyong Min 《China Communications》 SCIE CSCD 2023年第11期164-175,共12页
Limited by battery and computing re-sources,the computing-intensive tasks generated by Internet of Things(IoT)devices cannot be processed all by themselves.Mobile edge computing(MEC)is a suitable solution for this pro... Limited by battery and computing re-sources,the computing-intensive tasks generated by Internet of Things(IoT)devices cannot be processed all by themselves.Mobile edge computing(MEC)is a suitable solution for this problem,and the gener-ated tasks can be offloaded from IoT devices to MEC.In this paper,we study the problem of dynamic task offloading for digital twin-empowered MEC.Digital twin techniques are applied to provide information of environment and share the training data of agent de-ployed on IoT devices.We formulate the task offload-ing problem with the goal of maximizing the energy efficiency and the workload balance among the ESs.Then,we reformulate the problem as an MDP problem and design DRL-based energy efficient task offloading(DEETO)algorithm to solve it.Comparative experi-ments are carried out which show the superiority of our DEETO algorithm in improving energy efficiency and balancing the workload. 展开更多
关键词 deep reinforcement learning digital twin Internet of Things mobile edge computing
下载PDF
A deep-reinforcement learning approach for optimizing homogeneous droplet routing in digital microfluidic biochips
10
作者 Basudev Saha Bidyut Das Mukta Majumder 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2023年第2期1-12,共12页
Over the past two decades,digital microfluidic biochips have been in much demand for safety-critical and biomedical applications and increasingly important in point-of-care analysis,drug discovery,and immunoassays,amo... Over the past two decades,digital microfluidic biochips have been in much demand for safety-critical and biomedical applications and increasingly important in point-of-care analysis,drug discovery,and immunoassays,among other areas.However,for complex bioassays,finding routes for the transportation of droplets in an electrowetting-on-dielectric digital biochip while maintaining their discreteness is a challenging task.In this study,we propose a deep reinforcement learning-based droplet routing technique for digital microfluidic biochips.The technique is implemented on a distributed architecture to optimize the possible paths for predefined source–target pairs of droplets.The actors of the technique calculate the possible routes of the source–target pairs and store the experience in a replay buffer,and the learner fetches the experiences and updates the routing paths.The proposed algorithm was applied to benchmark suitesⅠand Ⅲ as two different test benches,and it achieved significant improvements over state-of-the-art techniques. 展开更多
关键词 digital microfluidics BIOCHIP Droplet routing Fluidic constraints Deep learning Reinforcement learning
下载PDF
Digital Twin-Assisted Knowledge Distillation Framework for Heterogeneous Federated Learning
11
作者 Xiucheng Wang Nan Cheng +3 位作者 Longfei Ma Ruijin Sun Rong Chai Ning Lu 《China Communications》 SCIE CSCD 2023年第2期61-78,共18页
In this paper,to deal with the heterogeneity in federated learning(FL)systems,a knowledge distillation(KD)driven training framework for FL is proposed,where each user can select its neural network model on demand and ... In this paper,to deal with the heterogeneity in federated learning(FL)systems,a knowledge distillation(KD)driven training framework for FL is proposed,where each user can select its neural network model on demand and distill knowledge from a big teacher model using its own private dataset.To overcome the challenge of train the big teacher model in resource limited user devices,the digital twin(DT)is exploit in the way that the teacher model can be trained at DT located in the server with enough computing resources.Then,during model distillation,each user can update the parameters of its model at either the physical entity or the digital agent.The joint problem of model selection and training offloading and resource allocation for users is formulated as a mixed integer programming(MIP)problem.To solve the problem,Q-learning and optimization are jointly used,where Q-learning selects models for users and determines whether to train locally or on the server,and optimization is used to allocate resources for users based on the output of Q-learning.Simulation results show the proposed DT-assisted KD framework and joint optimization method can significantly improve the average accuracy of users while reducing the total delay. 展开更多
关键词 federated learning digital twin knowledge distillation HETEROGENEITY Q-learning convex optimization
下载PDF
Communication-Efficient Decision-Making of Digital Twin Assisted Internet of Vehicles: A Hierarchical Multi-Agent Reinforcement Learning Approach
12
作者 Xiaoyuan Fu Quan Yuan +3 位作者 Shifan Liu Baozhu Li Qi Qi Jingyu Wang 《China Communications》 SCIE CSCD 2023年第3期55-68,共14页
The connected autonomous vehicle is considered an effective way to improve transport safety and efficiency.To overcome the limited sensing and computing capabilities of individual vehicles,we design a digital twin ass... The connected autonomous vehicle is considered an effective way to improve transport safety and efficiency.To overcome the limited sensing and computing capabilities of individual vehicles,we design a digital twin assisted decision-making framework for Internet of Vehicles,by leveraging the integration of communication,sensing and computing.In this framework,the digital twin entities residing on edge can effectively communicate and cooperate with each other to plan sub-targets for their respective vehicles,while the vehicles only need to achieve the sub-targets by generating a sequence of atomic actions.Furthermore,we propose a hierarchical multiagent reinforcement learning approach to implement the framework,which can be trained in an end-to-end way.In the proposed approach,the communication interval of digital twin entities could adapt to timevarying environment.Extensive experiments on driving decision-making have been performed in traffic junction scenarios of different difficulties.The experimental results show that the proposed approach can largely improve collaboration efficiency while reducing communication overhead. 展开更多
关键词 digital twin Internet of Vehicles hierar-chical reinforcement learning
下载PDF
Machine learning-based stiffness optimization of digital composite metamaterials with desired positive or negative Poisson's ratio
13
作者 Xihang Jiang Fan Liu Lifeng Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第6期424-431,共8页
Mechanical metamaterials such as auxetic materials have attracted great interest due to their unusual properties that are dictated by their architectures.However,these architected materials usually have low stiffness ... Mechanical metamaterials such as auxetic materials have attracted great interest due to their unusual properties that are dictated by their architectures.However,these architected materials usually have low stiffness because of the bending or rotation deformation mechanisms in the microstructures.In this work,a convolutional neural network(CNN)based self-learning multi-objective optimization is performed to design digital composite materials.The CNN models have undergone rigorous training using randomly generated two-phase digital composite materials,along with their corresponding Poisson's ratios and stiffness values.Then the CNN models are used for designing composite material structures with the minimum Poisson's ratio at a given volume fraction constraint.Furthermore,we have designed composite materials with optimized stiffness while exhibiting a desired Poisson's ratio(negative,zero,or positive).The optimized designs have been successfully and efficiently obtained,and their validity has been confirmed through finite element analysis results.This self-learning multi-objective optimization model offers a promising approach for achieving comprehensive multi-objective optimization. 展开更多
关键词 digital composite materials METAMATERIALS Machine learning Convolutional neural network(CNN) Poisson's ratio STIFFNESS
下载PDF
Deep learning assisted variational Hilbert quantitative phase imaging 被引量:3
14
作者 Zhuoshi Li Jiasong Sun +7 位作者 Yao Fan Yanbo Jin Qian Shen Maciej Trusiak Maria Cywińska Peng Gao Qian Chen Chao Zuo 《Opto-Electronic Science》 2023年第4期1-11,共11页
We propose a high-accuracy artifacts-free single-frame digital holographic phase demodulation scheme for relatively lowcarrier frequency holograms-deep learning assisted variational Hilbert quantitative phase imaging(... We propose a high-accuracy artifacts-free single-frame digital holographic phase demodulation scheme for relatively lowcarrier frequency holograms-deep learning assisted variational Hilbert quantitative phase imaging(DL-VHQPI).The method,incorporating a conventional deep neural network into a complete physical model utilizing the idea of residual compensation,reliably and robustly recovers the quantitative phase information of the test objects.It can significantly alleviate spectrum-overlapping-caused phase artifacts under the slightly off-axis digital holographic system.Compared to the conventional end-to-end networks(without a physical model),the proposed method can reduce the dataset size dramatically while maintaining the imaging quality and model generalization.The DL-VHQPI is quantitatively studied by numerical simulation.The live-cell experiment is designed to demonstrate the method's practicality in biological research.The proposed idea of the deep learning-assisted physical model might be extended to diverse computational imaging techniques. 展开更多
关键词 quantitative phase imaging digital holography deep learning high-throughput imaging
下载PDF
A Review of Machine Learning Techniques in Cyberbullying Detection 被引量:1
15
作者 Daniyar Sultan Batyrkhan Omarov +5 位作者 Zhazira Kozhamkulova Gulnur Kazbekova Laura Alimzhanova Aigul Dautbayeva Yernar Zholdassov Rustam Abdrakhmanov 《Computers, Materials & Continua》 SCIE EI 2023年第3期5625-5640,共16页
Automatic identification of cyberbullying is a problem that is gaining traction,especially in the Machine Learning areas.Not only is it complicated,but it has also become a pressing necessity,considering how social me... Automatic identification of cyberbullying is a problem that is gaining traction,especially in the Machine Learning areas.Not only is it complicated,but it has also become a pressing necessity,considering how social media has become an integral part of adolescents’lives and how serious the impacts of cyberbullying and online harassment can be,particularly among teenagers.This paper contains a systematic literature review of modern strategies,machine learning methods,and technical means for detecting cyberbullying and the aggressive command of an individual in the information space of the Internet.We undertake an in-depth review of 13 papers from four scientific databases.The article provides an overview of scientific literature to analyze the problem of cyberbullying detection from the point of view of machine learning and natural language processing.In this review,we consider a cyberbullying detection framework on social media platforms,which includes data collection,data processing,feature selection,feature extraction,and the application ofmachine learning to classify whether texts contain cyberbullying or not.This article seeks to guide future research on this topic toward a more consistent perspective with the phenomenon’s description and depiction,allowing future solutions to be more practical and effective. 展开更多
关键词 CYBERBULLYING hate speech digital drama online harassment DETECTION classification machine learning NLP
下载PDF
A machine learning approach for accelerated design of magnesium alloys.Part B: Regression and property prediction
16
作者 M.Ghorbani M.Boley +1 位作者 P.N.H.Nakashima N.Birbilis 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4197-4205,共9页
Machine learning(ML) models provide great opportunities to accelerate novel material development, offering a virtual alternative to laborious and resource-intensive empirical methods. In this work, the second of a two... Machine learning(ML) models provide great opportunities to accelerate novel material development, offering a virtual alternative to laborious and resource-intensive empirical methods. In this work, the second of a two-part study, an ML approach is presented that offers accelerated digital design of Mg alloys. A systematic evaluation of four ML regression algorithms was explored to rationalise the complex relationships in Mg-alloy data and to capture the composition-processing-property patterns. Cross-validation and hold-out set validation techniques were utilised for unbiased estimation of model performance. Using atomic and thermodynamic properties of the alloys, feature augmentation was examined to define the most descriptive representation spaces for the alloy data. Additionally, a graphical user interface(GUI) webtool was developed to facilitate the use of the proposed models in predicting the mechanical properties of new Mg alloys. The results demonstrate that random forest regression model and neural network are robust models for predicting the ultimate tensile strength and ductility of Mg alloys, with accuracies of ~80% and 70% respectively. The developed models in this work are a step towards high-throughput screening of novel candidates for target mechanical properties and provide ML-guided alloy design. 展开更多
关键词 Magnesium alloys digital alloy design Supervised machine learning Regression models Prediction performance
下载PDF
Combination of effective color information and machine learning for rapid prediction of soil water content
17
作者 Guanshi Liu Shengkui Tian +2 位作者 Guofang Xu Chengcheng Zhang Mingxuan Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2441-2457,共17页
Soil water content(SWC)is one of the critical indicators in various fields such as geotechnical engineering and agriculture.To avoid the time-consuming,destructive,and laborious drawbacks of conventional SWC measureme... Soil water content(SWC)is one of the critical indicators in various fields such as geotechnical engineering and agriculture.To avoid the time-consuming,destructive,and laborious drawbacks of conventional SWC measurements,the image-based SWC prediction is considered based on recent advances in quantitative soil color analysis.In this study,a promising method based on the Gaussian-fitting gray histogram is proposed for extracting characteristic parameters by analyzing soil images,aiming to alleviate the interference of complex surface conditions with color information extraction.In addition,an identity matrix consisting of 32 characteristic parameters from eight color spaces is constituted to describe the multi-dimensional information of the soil images.Meanwhile,a subset of 10 parameters is identified through three variable analytical methods.Then,four machine learning models for SWC prediction based on partial least squares regression(PLSR),random forest(RF),support vector machines regression(SVMR),and Gaussian process regression(GPR),are established using 32 and 10 characteristic parameters,and their performance is compared.The results show that the characteristic parameters obtained by Gaussian-fitting can effectively reduce the interference from soil surface conditions.The RGB,CIEXYZ,and CIELCH color spaces and lightness parameters,as the inputs,are more suitable for the SWC prediction models.Furthermore,it is found that 10 parameters could also serve as optimal and generalizable predictors without considerably reducing prediction accuracy,and the GPR model has the best prediction performance(R^(2)≥0.95,RMSE≤2.01%,RPD≥4.95,and RPIQ≥6.37).The proposed image-based SWC predictive models combined with effective color information and machine learning can achieve a transient and highly precise SWC prediction,providing valuable insights for mapping soil moisture fields. 展开更多
关键词 Soil water content(SWC) digital image Soil color Color space Machine learning
下载PDF
Person-Dependent Handwriting Verification for Special Education Using DeepLearning
18
作者 Umut Zeki Tolgay Karanfiller Kamil Yurtkan 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期1121-1135,共15页
Individuals with special needs learn more slowly than their peers and they need repetitions to be permanent.However,in crowded classrooms,it is dif-ficult for a teacher to deal with each student individually.This probl... Individuals with special needs learn more slowly than their peers and they need repetitions to be permanent.However,in crowded classrooms,it is dif-ficult for a teacher to deal with each student individually.This problem can be overcome by using supportive education applications.However,the majority of such applications are not designed for special education and therefore they are not efficient as expected.Special education students differ from their peers in terms of their development,characteristics,and educational qualifications.The handwriting skills of individuals with special needs are lower than their peers.This makes the task of Handwriting Recognition(HWR)more difficult.To over-come this problem,we propose a new personalized handwriting verification sys-tem that validates digits from the handwriting of special education students.The system uses a Convolutional Neural Network(CNN)created and trained from scratch.The data set used is obtained by collecting the handwriting of the students with the help of a tablet.A special education center is visited and the handwrittenfigures of the students are collected under the supervision of special education tea-chers.The system is designed as a person-dependent system as every student has their writing style.Overall,the system achieves promising results,reaching a recognition accuracy of about 94%.Overall,the system can verify special educa-tion students’handwriting digits with high accuracy and is ready to integrate with a mobile application that is designed to teach digits to special education students. 展开更多
关键词 Special education deep learning convolutional neural network handwriting verification handwriting digit verification person-dependent training handwriting recognition
下载PDF
Collaborative Clustering Parallel Reinforcement Learning for Edge-Cloud Digital Twins Manufacturing System 被引量:1
19
作者 Fan Yang Tao Feng +2 位作者 Fangmin Xu Huiwen Jiang Chenglin Zhao 《China Communications》 SCIE CSCD 2022年第8期138-148,共11页
To realize high-accuracy physical-cyber digital twin(DT)mapping in a manufacturing system,a huge amount of data need to be collected and analyzed in real-time.Traditional DTs systems are deployed in cloud or edge serv... To realize high-accuracy physical-cyber digital twin(DT)mapping in a manufacturing system,a huge amount of data need to be collected and analyzed in real-time.Traditional DTs systems are deployed in cloud or edge servers independently,whilst it is hard to apply in real production systems due to the high interaction or execution delay.This results in a low consistency in the temporal dimension of the physical-cyber model.In this work,we propose a novel efficient edge-cloud DT manufacturing system,which is inspired by resource scheduling technology.Specifically,an edge-cloud collaborative DTs system deployment architecture is first constructed.Then,deterministic and uncertainty optimization adaptive strategies are presented to choose a more powerful server for running DT-based applications.We model the adaptive optimization problems as dynamic programming problems and propose a novel collaborative clustering parallel Q-learning(CCPQL)algorithm and prediction-based CCPQL to solve the problems.The proposed approach reduces the total delay with a higher convergence rate.Numerical simulation results are provided to validate the approach,which would have great potential in dynamic and complex industrial internet environments. 展开更多
关键词 edge-cloud collaboration digital twins job shop scheduling parallel reinforcement learning
下载PDF
Chilean University Students Digital Learning Technology Usage Patterns and Approachesto Learning 被引量:1
20
作者 Carlos González Dany Lópeza +2 位作者 Lina Calle-Arangoa Helena Montenegro Paula Clasing 《ECNU Review of Education》 2022年第1期37-64,共28页
Purpose:This study aims to explore Chilean students'digital technology usage patterns andapproaches to learningDesignlApproach/Methods:We conducted this study in two stages We worked with onesemester learning mana... Purpose:This study aims to explore Chilean students'digital technology usage patterns andapproaches to learningDesignlApproach/Methods:We conducted this study in two stages We worked with onesemester learning management systems(LMS),library,and students records data in the firstone.We performed a k-means cluster analysis to identify groups with similar usage patterns.Inthe second stage,we invited students from emerging dusters to participate in group interviews.Thematic analysis was employed to analyze them.Findings:Three groups were identified:ID digital library users/high performers,who adopteddeeper approaches to learning obtained higher marks,and used learning resources to integratematerials and expand understanding 2)LMS and physical library userslmid-performers,whoadopted mainly strategicapproaches obtained marks dlose to average,and used learning resources for studying in an organized manner toget good marks and 3)lower users of LMS andlibrarylmidlow performers,who adopted mainly a surface approach,obtained mid-to-lower-than-averagemarks,and used learning resources for minimum content understanding Originality/Value:We demonstrated the importance of combining learning analytics data withqualitative methods to make sense of digital technology usage patternss approaches to learningare associated with learning resources use.Practical recommendations are presented. 展开更多
关键词 Academic performance approaches to learning digital technology learning analytics
原文传递
上一页 1 2 146 下一页 到第
使用帮助 返回顶部