Microfuidic systems have been widely utilized in high-throughput biology analysis,but thedificulties in iquid manipulation and cell cultivation limit its application.This work has developed a new digital microfluidic(...Microfuidic systems have been widely utilized in high-throughput biology analysis,but thedificulties in iquid manipulation and cell cultivation limit its application.This work has developed a new digital microfluidic(DMF)system for on-demand droplet control.By adopting anextending-depth-of-field(EDoF)phase modulator to the optical system,the entire depth of themicrofluidic channel can be covered in one image without any refocusing process,ensuring that 95%of the particles in the droplet are captured within three shots together with shaking pro-cesses.With this system,suspension droplets are generated and droplets containing only oneyeast cll can be recognized,then each single cell is cultured in the array of the chip.Byobservingtheir growth in cell numbers and the green fluorescence protein(GFP)production via fluorescence imaging,the single cell with the highest production can be identified.The results haveproved the heterogeneity of yeast cells,and showed that the combined system can be applied forrapid single-cell sorting,cultivation,and analysis.展开更多
Over the past two decades,digital microfluidic biochips have been in much demand for safety-critical and biomedical applications and increasingly important in point-of-care analysis,drug discovery,and immunoassays,amo...Over the past two decades,digital microfluidic biochips have been in much demand for safety-critical and biomedical applications and increasingly important in point-of-care analysis,drug discovery,and immunoassays,among other areas.However,for complex bioassays,finding routes for the transportation of droplets in an electrowetting-on-dielectric digital biochip while maintaining their discreteness is a challenging task.In this study,we propose a deep reinforcement learning-based droplet routing technique for digital microfluidic biochips.The technique is implemented on a distributed architecture to optimize the possible paths for predefined source–target pairs of droplets.The actors of the technique calculate the possible routes of the source–target pairs and store the experience in a replay buffer,and the learner fetches the experiences and updates the routing paths.The proposed algorithm was applied to benchmark suitesⅠand Ⅲ as two different test benches,and it achieved significant improvements over state-of-the-art techniques.展开更多
Single-cell joint analysis of methylome and transcriptome reveals how the methylation regulates the transcriptional activity.However,traditional bench-top protocols for single-cell DNA methylation and RNA transcriptio...Single-cell joint analysis of methylome and transcriptome reveals how the methylation regulates the transcriptional activity.However,traditional bench-top protocols for single-cell DNA methylation and RNA transcription co-detection are laborintensive,cost-ineffective and contaminant-prone.Herein,we establish the DMF-sc MT-seq,a highly-efficient and cost-effective method to simultaneously analyze single-cell DNA methylation and transcriptional activity based on digital microfluidics.DMFsc MT-seq automates the workflow of single-cell isolation,cellular hypotonic lysis,nucleic acid separation and methylome/transcriptome library construction in a contactless and addressable way.The system ensures high accuracy(R>0.85),high gene detection ability(14,697 genes per cell at 4 million sequencing depth),and high CpG coverage(677,198 CpG sites per cell at 1million sequencing depth).By using DMF-sc MT-seq,the relationship of DNA methylation and RNA transcription under different genomic contexts is resolved.We further apply DMF-sc MT-seq to study the dynamics of transcription regulation with methylation-inhibiting anti-tumor Decitabine,and identify the methylated promoter/gene body driven genes in response to Decitabine treatment.DMF-sc MT-seq facilitates the construction of the correlation of DNA methylation and transcriptional activity at the single-cell level in a flexible,sensitive and accurate way,which is anticipated to be a powerful tool in studying single-cell biological systems.展开更多
In this paper, an electrohydrodynamic approach is used to model and study dynamics of evaporating microdroplets in digital microfluidic systems. A numerical eleetrohydrodynamic approach is used to calculate the drivin...In this paper, an electrohydrodynamic approach is used to model and study dynamics of evaporating microdroplets in digital microfluidic systems. A numerical eleetrohydrodynamic approach is used to calculate the driving force and shear force (due to the walls). Effects of contact line pinning is considered by adding a three-phase contact line force, and also considering dynamic contact angle which modifies the mierodroplet boundary conditions. Since air is used as the filler fluid, the drag force is neglected. Although energy equation is not solved (constant temperature assumption), effects of the evaporation is considered from two aspects: It is shown that an additional force is needed to balance the dynamic equation of the mierodroplet motion. Also, at each time step the microdroplet interface has to be deformed due to the change in the microdroplet radius. Important findings of the proposed model includes the transient velocity and displacement of the microdroplet as well as the driving and opposing forces acting on the microdroplet as functions of time. It is shown that mass loss due to evaporation tends to accelerate the droplet; whereas the competitive effect of the reduced driving force decelerates the droplet at the end of motion. The modeling results indicate that evaporation plays a crucial role in microdroplet motion by changing the force balance and the microdroplet boundary condition.展开更多
With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flood...With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flooding experiment videos as the data source. The results of the new method were verified through comparing with the manual measurement data.On this basis, the dynamic changes of the three-phase contact angles under flow conditions were clarified by the contact angles probability density curve and mean value change curve. The results show that, for water-wetting rocks, the mean value of the contact angles is acute angle during the early stage of the water flooding process, and it increases with the displacement time and becomes obtuse angle in the middle-late stage of displacement as the dominant force of oil phase gradually changes from viscous force to capillary force. The droplet flow in the remaining oil occurs in the central part of the pore throats, without three-phase contact angle. The contact angles for the porous flow and the columnar flow change slightly during the displacement and present as obtuse angles in view of mean values, which makes the remaining oil poorly movable and thus hard to be recovered. The mean value of the contact angle for the cluster flow tends to increase in the flooding process, which makes the remaining oil more difficult to be recovered. The contact angles for the membrane flow are mainly obtuse angles and reach the highest mean value in the late stage of displacement, which makes the remaining oil most difficult to be recovered. After displacement, the remaining oils under different flow regimes are just subjected to capillary force, with obtuse contact angles, and the wettability of the pore throat walls in the microfluidic model tends to be oil-wet under the action of crude oil.展开更多
Three-dimensional(3D)printing is an emerging technique that has shown promising success in engineering human tissues in recent years.Further development of vatphotopolymerization printing modalities has significantly ...Three-dimensional(3D)printing is an emerging technique that has shown promising success in engineering human tissues in recent years.Further development of vatphotopolymerization printing modalities has significantly enhanced the complexity level for 3D printing of various functional structures and components.Similarly,the development of microfluidic chip systems is an emerging research sector with promising medical applications.This work demonstrates the coupling of a digital light processing(DLP)printing procedure with a microfluidic chip system to produce size-tunable,3D-printable porosities with narrow pore size distributions within a gelatin methacryloyl(GelMA)hydrogel matrix.It is found that the generation of size-tunable gas bubbles trapped within an aqueous GelMA hydrogel-precursor can be controlled with high precision.Furthermore,the porosities are printed in two-dimensional(2D)as well as in 3D using the DLP printer.In addition,the cytocompatibility of the printed porous scaffolds is investigated using fibroblasts,where high cell viabilities as well as cell proliferation,spreading,and migration are confirmed.It is anticipated that the strategy is widely applicable in a range of application areas such as tissue engineering and regenerative medicine,among others.展开更多
The rise of antibiotic resistance as one of the most serious global public health threats has necessitated the timely clinical diagnosis and precise treatment of deadly bacterial infections.To identify which types and...The rise of antibiotic resistance as one of the most serious global public health threats has necessitated the timely clinical diagnosis and precise treatment of deadly bacterial infections.To identify which types and doses of antibiotics remain effective for fighting against multi-drug-resistant pathogens,the development of rapid and accurate antibiotic-susceptibility testing(AST)is of primary importance.Conventional methods for AST in well-plate formats with disk diffusion or broth dilution are both labor-intensive and operationally tedious.The microfluidic chip provides a versatile tool for evaluating bacterial AST and resistant behaviors.In this paper,we develop an operationally simple,3D-printed microfluidic chip for AST which automatically deploys antibiotic concentration gradients and fluorescence intensity-based reporting to ideally reduce the report time for AST to within 5 h.By harnessing a commercially available,digital light processing(DLP)3D printing method that offers a rapid,high-precision microfluidic chip-manufacturing capability,we design and realize the accurate generation of on-chip antibiotic concentration gradients based on flow resistance and diffusion mechanisms.We further demonstrate the employment of the microfluidic chip for the AST of E.coli to representative clinical antibiotics of three classes:ampicillin,chloramphenicol,and kanamycin.The determined minimum inhibitory concentration values are comparable to those reported by conventional well-plate methods.Our proposed method demonstrates a promising approach for realizing robust,convenient,and automatable AST of clinical bacterial pathogens.展开更多
Traditional diagnostic strategies for infectious disease detection require benchtop instruments that are inappropriate for point-of-care testing(POCT). Emerging microfluidics, a highly miniaturized, automatic, and int...Traditional diagnostic strategies for infectious disease detection require benchtop instruments that are inappropriate for point-of-care testing(POCT). Emerging microfluidics, a highly miniaturized, automatic, and integrated technology,are a potential substitute for traditional methods in performing rapid, low-cost, accurate, and on-site diagnoses.Molecular diagnostics are widely used in microfluidic devices as the most effective approaches for pathogen detection.This review summarizes the latest advances in microfluidics-based molecular diagnostics for infectious diseases from academic perspectives and industrial outlooks. First, we introduce the typical on-chip nucleic acid processes,including sample preprocessing, amplification, and signal read-out. Then, four categories of microfluidic platforms are compared with respect to features, merits, and demerits. We further discuss application of the digital assay in absolute nucleic acid quantification. Both the classic and recent microfluidics-based commercial molecular diagnostic devices are summarized as proof of the current market status. Finally, we propose future directions for microfluidics-based infectious disease diagnosis.展开更多
Outbreaks of both influenza virus and the novel coronavirus SARS-CoV-2 are serious threats to human health and life. It is very important to establish a rapid, accurate test with large-scale detection potential to pre...Outbreaks of both influenza virus and the novel coronavirus SARS-CoV-2 are serious threats to human health and life. It is very important to establish a rapid, accurate test with large-scale detection potential to prevent the further spread of the epidemic. An optimized RPA-Cas12a-based platform combined with digital microfluidics(DMF), the RCD platform, was established to achieve the automated, rapid detection of influenza viruses and SARS-CoV-2. The probe in the RPA-Cas12a system was optimized to produce maximal fluorescence to increase the amplification signal. The reaction droplets in the platform were all at the microliter level and the detection could be accomplished within 30 min due to the effective mixing of droplets by digital microfluidic technology. The whole process from amplification to recognition is completed in the chip, which reduces the risk of aerosol contamination. One chip can contain multiple detection reaction areas, offering the potential for customized detection.The RCD platform demonstrated a high level of sensitivity, specificity(no false positives or negatives), speed(≤30 min),automation and multiplexing. We also used the RCD platform to detect nucleic acids from influenza patients and COVID-19 patients. The results were consistent with the findings of q PCR. The RCD platform is a one-step, rapid, highly sensitive and specific method with the advantages of digital microfluidic technology, which circumvents the shortcomings of manual operation. The development of the RCD platform provides potential for the isothermal automatic detection of nucleic acids during epidemics.展开更多
基金supported by the National Key R&D Program of China(2021YFF0502900)the National Natural Science Foundation of China(62175034,62175036)+7 种基金the Anhui Province KeyR&D Project(202003a07020020)the ShanghaiNatural Science Foundation(grant No.20ZR1405100)the Science and Technology Research Program ofShanghai(grant No.19DZ2282100)the Shanghaikey discipline construction plan(2020-2022)(grantNo.GWV-10.1-XK01)the Shanghai EngineeringTechnology Research Center of Hair Medicine(19DZ2250500)the Medical Engineering Fund of Fudan University(yg2021-022)the Pioneering Project of Academy for Engineering and Technology,the Fudan University(gy2018-001,gy2018-002)the Yantai Returned Scholars'Pioneering Park.
文摘Microfuidic systems have been widely utilized in high-throughput biology analysis,but thedificulties in iquid manipulation and cell cultivation limit its application.This work has developed a new digital microfluidic(DMF)system for on-demand droplet control.By adopting anextending-depth-of-field(EDoF)phase modulator to the optical system,the entire depth of themicrofluidic channel can be covered in one image without any refocusing process,ensuring that 95%of the particles in the droplet are captured within three shots together with shaking pro-cesses.With this system,suspension droplets are generated and droplets containing only oneyeast cll can be recognized,then each single cell is cultured in the array of the chip.Byobservingtheir growth in cell numbers and the green fluorescence protein(GFP)production via fluorescence imaging,the single cell with the highest production can be identified.The results haveproved the heterogeneity of yeast cells,and showed that the combined system can be applied forrapid single-cell sorting,cultivation,and analysis.
文摘Over the past two decades,digital microfluidic biochips have been in much demand for safety-critical and biomedical applications and increasingly important in point-of-care analysis,drug discovery,and immunoassays,among other areas.However,for complex bioassays,finding routes for the transportation of droplets in an electrowetting-on-dielectric digital biochip while maintaining their discreteness is a challenging task.In this study,we propose a deep reinforcement learning-based droplet routing technique for digital microfluidic biochips.The technique is implemented on a distributed architecture to optimize the possible paths for predefined source–target pairs of droplets.The actors of the technique calculate the possible routes of the source–target pairs and store the experience in a replay buffer,and the learner fetches the experiences and updates the routing paths.The proposed algorithm was applied to benchmark suitesⅠand Ⅲ as two different test benches,and it achieved significant improvements over state-of-the-art techniques.
基金supported by the National Natural Science Foundation of China(21927806,22204132,22104080)the National Key R&D Program of China(2019YFA0905800)+1 种基金the Innovative Research Team of High-Level Local Universities in Shanghai,and the Fundamental Research Funds for the Central Universities(2072021000,20720210005)the Natural Science Foundation of Fujian Province(2022J011360)。
文摘Single-cell joint analysis of methylome and transcriptome reveals how the methylation regulates the transcriptional activity.However,traditional bench-top protocols for single-cell DNA methylation and RNA transcription co-detection are laborintensive,cost-ineffective and contaminant-prone.Herein,we establish the DMF-sc MT-seq,a highly-efficient and cost-effective method to simultaneously analyze single-cell DNA methylation and transcriptional activity based on digital microfluidics.DMFsc MT-seq automates the workflow of single-cell isolation,cellular hypotonic lysis,nucleic acid separation and methylome/transcriptome library construction in a contactless and addressable way.The system ensures high accuracy(R>0.85),high gene detection ability(14,697 genes per cell at 4 million sequencing depth),and high CpG coverage(677,198 CpG sites per cell at 1million sequencing depth).By using DMF-sc MT-seq,the relationship of DNA methylation and RNA transcription under different genomic contexts is resolved.We further apply DMF-sc MT-seq to study the dynamics of transcription regulation with methylation-inhibiting anti-tumor Decitabine,and identify the methylated promoter/gene body driven genes in response to Decitabine treatment.DMF-sc MT-seq facilitates the construction of the correlation of DNA methylation and transcriptional activity at the single-cell level in a flexible,sensitive and accurate way,which is anticipated to be a powerful tool in studying single-cell biological systems.
文摘In this paper, an electrohydrodynamic approach is used to model and study dynamics of evaporating microdroplets in digital microfluidic systems. A numerical eleetrohydrodynamic approach is used to calculate the driving force and shear force (due to the walls). Effects of contact line pinning is considered by adding a three-phase contact line force, and also considering dynamic contact angle which modifies the mierodroplet boundary conditions. Since air is used as the filler fluid, the drag force is neglected. Although energy equation is not solved (constant temperature assumption), effects of the evaporation is considered from two aspects: It is shown that an additional force is needed to balance the dynamic equation of the mierodroplet motion. Also, at each time step the microdroplet interface has to be deformed due to the change in the microdroplet radius. Important findings of the proposed model includes the transient velocity and displacement of the microdroplet as well as the driving and opposing forces acting on the microdroplet as functions of time. It is shown that mass loss due to evaporation tends to accelerate the droplet; whereas the competitive effect of the reduced driving force decelerates the droplet at the end of motion. The modeling results indicate that evaporation plays a crucial role in microdroplet motion by changing the force balance and the microdroplet boundary condition.
基金Supported by National Science and Technology Major Project of China (51674271)Major Technical Field Test of PetroChina (2019F-33)。
文摘With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flooding experiment videos as the data source. The results of the new method were verified through comparing with the manual measurement data.On this basis, the dynamic changes of the three-phase contact angles under flow conditions were clarified by the contact angles probability density curve and mean value change curve. The results show that, for water-wetting rocks, the mean value of the contact angles is acute angle during the early stage of the water flooding process, and it increases with the displacement time and becomes obtuse angle in the middle-late stage of displacement as the dominant force of oil phase gradually changes from viscous force to capillary force. The droplet flow in the remaining oil occurs in the central part of the pore throats, without three-phase contact angle. The contact angles for the porous flow and the columnar flow change slightly during the displacement and present as obtuse angles in view of mean values, which makes the remaining oil poorly movable and thus hard to be recovered. The mean value of the contact angle for the cluster flow tends to increase in the flooding process, which makes the remaining oil more difficult to be recovered. The contact angles for the membrane flow are mainly obtuse angles and reach the highest mean value in the late stage of displacement, which makes the remaining oil most difficult to be recovered. After displacement, the remaining oils under different flow regimes are just subjected to capillary force, with obtuse contact angles, and the wettability of the pore throat walls in the microfluidic model tends to be oil-wet under the action of crude oil.
基金National Science Centre Poland(NCN),Grant/Award Number:2020/37/B/ST8/02167European Union’s Horizon 2020 research and innovation program,Grant/Award Number:813786+2 种基金National Institutes of Health,Grant/Award Number:R21EB025270National Science Foundation,Grant/Award Number:CBET-EBMS-1936105Brigham Research Institute。
文摘Three-dimensional(3D)printing is an emerging technique that has shown promising success in engineering human tissues in recent years.Further development of vatphotopolymerization printing modalities has significantly enhanced the complexity level for 3D printing of various functional structures and components.Similarly,the development of microfluidic chip systems is an emerging research sector with promising medical applications.This work demonstrates the coupling of a digital light processing(DLP)printing procedure with a microfluidic chip system to produce size-tunable,3D-printable porosities with narrow pore size distributions within a gelatin methacryloyl(GelMA)hydrogel matrix.It is found that the generation of size-tunable gas bubbles trapped within an aqueous GelMA hydrogel-precursor can be controlled with high precision.Furthermore,the porosities are printed in two-dimensional(2D)as well as in 3D using the DLP printer.In addition,the cytocompatibility of the printed porous scaffolds is investigated using fibroblasts,where high cell viabilities as well as cell proliferation,spreading,and migration are confirmed.It is anticipated that the strategy is widely applicable in a range of application areas such as tissue engineering and regenerative medicine,among others.
基金the National Natural Science Foundation of China(No.51908467)and by institutional funds from the Westlake University。
文摘The rise of antibiotic resistance as one of the most serious global public health threats has necessitated the timely clinical diagnosis and precise treatment of deadly bacterial infections.To identify which types and doses of antibiotics remain effective for fighting against multi-drug-resistant pathogens,the development of rapid and accurate antibiotic-susceptibility testing(AST)is of primary importance.Conventional methods for AST in well-plate formats with disk diffusion or broth dilution are both labor-intensive and operationally tedious.The microfluidic chip provides a versatile tool for evaluating bacterial AST and resistant behaviors.In this paper,we develop an operationally simple,3D-printed microfluidic chip for AST which automatically deploys antibiotic concentration gradients and fluorescence intensity-based reporting to ideally reduce the report time for AST to within 5 h.By harnessing a commercially available,digital light processing(DLP)3D printing method that offers a rapid,high-precision microfluidic chip-manufacturing capability,we design and realize the accurate generation of on-chip antibiotic concentration gradients based on flow resistance and diffusion mechanisms.We further demonstrate the employment of the microfluidic chip for the AST of E.coli to representative clinical antibiotics of three classes:ampicillin,chloramphenicol,and kanamycin.The determined minimum inhibitory concentration values are comparable to those reported by conventional well-plate methods.Our proposed method demonstrates a promising approach for realizing robust,convenient,and automatable AST of clinical bacterial pathogens.
基金supported by the Nationa l Key Research and Development Program of China (2021YFA1101500)the National Natural Science Foundation of China (22074047)+1 种基金the Hubei Provincial Natural Science Foundation of China (2020CFB578)the Fundamental Research Funds for Central Universities,HUST (2020kfy XJJS034)。
文摘Traditional diagnostic strategies for infectious disease detection require benchtop instruments that are inappropriate for point-of-care testing(POCT). Emerging microfluidics, a highly miniaturized, automatic, and integrated technology,are a potential substitute for traditional methods in performing rapid, low-cost, accurate, and on-site diagnoses.Molecular diagnostics are widely used in microfluidic devices as the most effective approaches for pathogen detection.This review summarizes the latest advances in microfluidics-based molecular diagnostics for infectious diseases from academic perspectives and industrial outlooks. First, we introduce the typical on-chip nucleic acid processes,including sample preprocessing, amplification, and signal read-out. Then, four categories of microfluidic platforms are compared with respect to features, merits, and demerits. We further discuss application of the digital assay in absolute nucleic acid quantification. Both the classic and recent microfluidics-based commercial molecular diagnostic devices are summarized as proof of the current market status. Finally, we propose future directions for microfluidics-based infectious disease diagnosis.
基金supported by the Science and Technology Program of Fujian Province (2018Y4013 to B.-A.L.)the Science and Technology Project of Xiamen Science and Technology Bureau (3502Z20193023 to B.-A.L.)+4 种基金the Health-Education Joint Research Project of Fujian Province (2019-WJ-34 to B.-A.L. and Z.-M.Z)the COVID-19 Emergency Research Project of Xiamen Science and Technology Bureau (3502Z2020YJ21 to Bio Detect (Xiamen) Biotechnology Co., Ltd.)the COVID-19 Emergency Research Project of Xiamen University (X2106103 to B.-A.L.)the National Natural Science Foundation of China (U1705284, 81972458, and 81772958 to B.-A.L.)Project 111 sponsored by the State Bureau of Foreign Experts and Ministry of Education (B06016)。
文摘Outbreaks of both influenza virus and the novel coronavirus SARS-CoV-2 are serious threats to human health and life. It is very important to establish a rapid, accurate test with large-scale detection potential to prevent the further spread of the epidemic. An optimized RPA-Cas12a-based platform combined with digital microfluidics(DMF), the RCD platform, was established to achieve the automated, rapid detection of influenza viruses and SARS-CoV-2. The probe in the RPA-Cas12a system was optimized to produce maximal fluorescence to increase the amplification signal. The reaction droplets in the platform were all at the microliter level and the detection could be accomplished within 30 min due to the effective mixing of droplets by digital microfluidic technology. The whole process from amplification to recognition is completed in the chip, which reduces the risk of aerosol contamination. One chip can contain multiple detection reaction areas, offering the potential for customized detection.The RCD platform demonstrated a high level of sensitivity, specificity(no false positives or negatives), speed(≤30 min),automation and multiplexing. We also used the RCD platform to detect nucleic acids from influenza patients and COVID-19 patients. The results were consistent with the findings of q PCR. The RCD platform is a one-step, rapid, highly sensitive and specific method with the advantages of digital microfluidic technology, which circumvents the shortcomings of manual operation. The development of the RCD platform provides potential for the isothermal automatic detection of nucleic acids during epidemics.