A challenging task when applying high-order digital modulation schemes is the complexity of the detector. Particularly, the complexity of the optimal a posteriori probability (APP) detector increases exponentially w...A challenging task when applying high-order digital modulation schemes is the complexity of the detector. Particularly, the complexity of the optimal a posteriori probability (APP) detector increases exponentially with respect to the number of bits per data symbol. This statement is also true for the Max-Log-APP detector, which is a common simplification of the APP detector. Thus it is important to design new detection algorithms which combine a sufficient performance with low complexity. In this contribution, a detection algorithm for two- dimensional digital modulation schemes which cannot be split-up into real and imaginary parts (like phase shift keying and phase-shifted snperposition modulation (PSM)) is proposed with emphasis on PSM with equal power allocation. This algorithm exploits the relationship between Max-Log-APP detection and a Voronoi diagram to determine planar surfaces of the soft outputs over the entire range of detector input values. As opposed to state-of-the-art detectors based on Voronoi surfaces, a priori information is taken into account, enabling iterative processing. Since the algorithm achieves Max-Log-APP performance, even in the presence of a priori information, this implies a great potential for complexity reduction compared to the classical APP detection.展开更多
Facing the body's EEG(electroencephalograph, 0.5–100 Hz, 5–100 μV) and ECG's(electrocardiogram,〈 100 Hz, 0.01–5 mV) micro signal detection requirement, this paper develops a pervasive application micro sign...Facing the body's EEG(electroencephalograph, 0.5–100 Hz, 5–100 μV) and ECG's(electrocardiogram,〈 100 Hz, 0.01–5 mV) micro signal detection requirement, this paper develops a pervasive application micro signal detection ASIC chip with the chopping modulation/demodulation method. The chopper-stabilization circuit with the RRL(ripple reduction loop) circuit is to suppress the ripple voltage, which locates at the single-stage amplifier's outputting terminal. The single-stage chopping core's noise has been suppressed too, and it is beneficial for suppressing noises of post-circuit. The chopping core circuit uses the PFB(positive feedback loop) to increase the inputting resistance, and the NFB(negative feedback loop) to stabilize the 40 dB intermediate frequency gain. The cascaded switch-capacitor sample/hold circuit has been used for deleting spike noises caused by non-ideal MOS switches, and the VGA/BPF(voltage gain amplifier/band pass filter) circuit is used to tune the chopper system's gain/bandwidth digitally. Assisted with the designed novel dry-electrode, the real test result of the chopping amplifying circuit gives some critical parameters: 8.1 μW/channel, 0.8 μVrms(@band-widthD100 Hz), 4216–11220 times digitally tuning gain range, etc. The data capture system uses the NI CO's data capturing DAQmx interface,and the captured micro EEG/ECG's waves are real-time displayed with the PC-Labview. The proposed chopper system is a unified EEG/ECG signal's detection instrument and has a critical real application value.展开更多
文摘A challenging task when applying high-order digital modulation schemes is the complexity of the detector. Particularly, the complexity of the optimal a posteriori probability (APP) detector increases exponentially with respect to the number of bits per data symbol. This statement is also true for the Max-Log-APP detector, which is a common simplification of the APP detector. Thus it is important to design new detection algorithms which combine a sufficient performance with low complexity. In this contribution, a detection algorithm for two- dimensional digital modulation schemes which cannot be split-up into real and imaginary parts (like phase shift keying and phase-shifted snperposition modulation (PSM)) is proposed with emphasis on PSM with equal power allocation. This algorithm exploits the relationship between Max-Log-APP detection and a Voronoi diagram to determine planar surfaces of the soft outputs over the entire range of detector input values. As opposed to state-of-the-art detectors based on Voronoi surfaces, a priori information is taken into account, enabling iterative processing. Since the algorithm achieves Max-Log-APP performance, even in the presence of a priori information, this implies a great potential for complexity reduction compared to the classical APP detection.
基金Project supported by the National Natural Science Foundation of China(Nos.61527815,31500800,61501426,61471342)the National Key Basic Research Plan(No.2014CB744600)+1 种基金the Beijing Science and Technology Plan(No.Z141100000214002)the Chinese Academy of Sciences’Key Project(No.KJZD-EW-L11-2)
文摘Facing the body's EEG(electroencephalograph, 0.5–100 Hz, 5–100 μV) and ECG's(electrocardiogram,〈 100 Hz, 0.01–5 mV) micro signal detection requirement, this paper develops a pervasive application micro signal detection ASIC chip with the chopping modulation/demodulation method. The chopper-stabilization circuit with the RRL(ripple reduction loop) circuit is to suppress the ripple voltage, which locates at the single-stage amplifier's outputting terminal. The single-stage chopping core's noise has been suppressed too, and it is beneficial for suppressing noises of post-circuit. The chopping core circuit uses the PFB(positive feedback loop) to increase the inputting resistance, and the NFB(negative feedback loop) to stabilize the 40 dB intermediate frequency gain. The cascaded switch-capacitor sample/hold circuit has been used for deleting spike noises caused by non-ideal MOS switches, and the VGA/BPF(voltage gain amplifier/band pass filter) circuit is used to tune the chopper system's gain/bandwidth digitally. Assisted with the designed novel dry-electrode, the real test result of the chopping amplifying circuit gives some critical parameters: 8.1 μW/channel, 0.8 μVrms(@band-widthD100 Hz), 4216–11220 times digitally tuning gain range, etc. The data capture system uses the NI CO's data capturing DAQmx interface,and the captured micro EEG/ECG's waves are real-time displayed with the PC-Labview. The proposed chopper system is a unified EEG/ECG signal's detection instrument and has a critical real application value.