Time-to-Digital Converter (TDC) is a key block used as the phase/frequency detector in an All-Digital Phase-Locked Loop (ADPLL). Usually, it occupies a large proportion of ADPLL's total power consumption up to abo...Time-to-Digital Converter (TDC) is a key block used as the phase/frequency detector in an All-Digital Phase-Locked Loop (ADPLL). Usually, it occupies a large proportion of ADPLL's total power consumption up to about 30% to 40%. In this paper, the detailed power consumption of different components in the TDC is analyzed. A Power Management Block (PMB) is presented for the TDC to reduce its power consumption. A 24-bits TDC core with the proposed PMB is implemented in HJTC 0.18 μm CMOS technology. Simulation results show that up to 84% power reduction is achieved using our proposed technique.展开更多
This paper deals with performance analysis and implementation of a three phase inverter fed induction motor (IM) drive system. The closed loop control scheme of the drive utilizes the Digital Phase Locked Loop (DPLL)....This paper deals with performance analysis and implementation of a three phase inverter fed induction motor (IM) drive system. The closed loop control scheme of the drive utilizes the Digital Phase Locked Loop (DPLL). The DPLL is safely implemented all around the well known integrated circuit DPLL 4046. An ex-perimental verification is carried out on one kw scalar controlled IM system drives for a wide range of speeds and loads appliance. This presents a simple and high performance solution for industrial applications.展开更多
A low jitter All-Digital Phase-Locked Loop (ADPLL) used as a clock generator is designed. The Digital-Controlled Oscillator (DCO) for this ADPLL is a seven-stage ring oscillator with the delay of each stage change...A low jitter All-Digital Phase-Locked Loop (ADPLL) used as a clock generator is designed. The Digital-Controlled Oscillator (DCO) for this ADPLL is a seven-stage ring oscillator with the delay of each stage changeable. Based on the Impulse Sensitivity Function (ISF) analysis, an effective way is proposed to reduce the ADPLL's jitter by the careful design of the sizes of the inverters used in the DCO with a simple architecture other than a complex one. The ADPLL is implemented in a 0.18μm CMOS process with 1.SV supply voltage, occupies 0.046mm^2 of on-chip area. According to the measured results, the ADPLL can operate from 108MHz to 304MHz, and the peak-to-peak jitter is 139ps when the DCO's output frequency is 188MHz.展开更多
<div style="text-align:justify;"> We propose a novel scheme, based on digital-heterodyne optical phase-locked loop with whole-fiber circuit, to dynamically measure the free-spectral-range of a fiber re...<div style="text-align:justify;"> We propose a novel scheme, based on digital-heterodyne optical phase-locked loop with whole-fiber circuit, to dynamically measure the free-spectral-range of a fiber resonator. The optical phase-locked loop is established with a differential frequency-modulation module consists of a pair of acousto-optic modulators. The resonance-tracking loop is derived with the Pound-Drever-Hall technique for locking the heterodyne frequency of the OPLL on the frequency difference between adjacent resonance modes. A stable locking accuracy of about 7 × 10<sup>?9</sup> and a dynamic locking accuracy of about 5 × 10<sup>?8</sup> are achieved with the FSR of 8.155 MHz, indicating a bias stability of the resonator fiber optic gyro of about 0.1?/h with 10 Hz bandwidth. In addition, the thermal drift coefficient of the FSR is measured as 0.1 Hz/?C. This shows remarkable potential for realizing advanced optical measurement systems, such as the resonant fiber optic gyro, and so on. </div>展开更多
Zero Crossing Digital Phase Locked Loop with Arc Sine block (AS-ZCDPLL) is used to linearize the phase difference detection, and enhance the loop performance. The loop has faster acquisition, less steady state phase e...Zero Crossing Digital Phase Locked Loop with Arc Sine block (AS-ZCDPLL) is used to linearize the phase difference detection, and enhance the loop performance. The loop has faster acquisition, less steady state phase error, and wider locking range compared to the conventional ZCDPLL. This work presents a Zero Crossing Digital Phase Locked Loop with Arc Sine block (ZCDPLL-AS). The performance of the loop is analyzed under mobile faded channel conditions. The mobile channel is assumed to be two path fading channel corrupted by additive white Gaussian noise (AWGM). It is shown that for a constant filter gain, the frequency spread has no effect on the steady state phase error variance when the loop is subjected to a phase step. For a frequency step and under the same conditions, the effect on phase error is minimal.展开更多
A fully digital beam position monitoring system(DBPM) has been designed for SSRF(Shanghai Synchrotron Radiation Facility). As analog-to-digital converter(ADC) is a crucial part in the DBPM system, the sampling methods...A fully digital beam position monitoring system(DBPM) has been designed for SSRF(Shanghai Synchrotron Radiation Facility). As analog-to-digital converter(ADC) is a crucial part in the DBPM system, the sampling methods should be studied to achieve optimum performance. Different sampling modes were used and compared through tests. Long term variation among four sampling channels, which would introduce errors in beam position measurement, is investigated. An interleaved distribution scheme was designed to address this issue. To evaluate the sampling methods, in-beam tests were conducted in SSRF. Test results indicate that with proper sampling methods, a turn-by-turn(TBT) position resolution better than 1 μm is achieved, and the slow-acquisition(SA) position resolution is improved from 4.28 μm to 0.17 μm.展开更多
This paper presents the architectures, algorithms, and implementation considerations of the digital phase locked loop (DPLL) used for burst-mode packet DS-CDMA receivers. As we know, carrier offset is a rather challen...This paper presents the architectures, algorithms, and implementation considerations of the digital phase locked loop (DPLL) used for burst-mode packet DS-CDMA receivers. As we know, carrier offset is a rather challenging problem in CDMA system. According to different applications, different DPLL forms should be adopted to correct different maximum carrier offset in CDMA systems. One classical DPLL and two novel DPLL forms are discussed in the paper. The acquisition range of carrier offset can be widened by using the two novel DPLL forms without any performance degradation such as longer acquisition time or larger variance of the phase error. The maximum acquisition range is 1/(4T), where T is the symbol period. The design can be implemented by FPGA directly.展开更多
A True Random Binary Generator (TRBG) based on a zero crossing digital phase-locked loop (ZCDPLL) is proposed. In order to face the challenges of using the proposed TRBG in cryptography, the proposed TRBG is subjected...A True Random Binary Generator (TRBG) based on a zero crossing digital phase-locked loop (ZCDPLL) is proposed. In order to face the challenges of using the proposed TRBG in cryptography, the proposed TRBG is subjected to the AIS 31 test suite. The ZCDPLL operate as chaotic generator for certain loop filter gains and this has been used to generate TRBs. The generated binary sequences have a good autocorrelation and cross-correlation properties as seen from the simulation results. A prototype of TRBG using ZCDPLL has been developed through Texas Instruments TMS320C6416 DSP development kit. The proposed TRBG successfully passed the AIS 31 test suit.展开更多
The stable operation of first and second order Zero Crossing Digital Phase Locked Loop (ZCDPLL) is extended by using a Fixed Point Iteration (FPI) method with relaxation. The non-linear components of ZCDPLL such as sa...The stable operation of first and second order Zero Crossing Digital Phase Locked Loop (ZCDPLL) is extended by using a Fixed Point Iteration (FPI) method with relaxation. The non-linear components of ZCDPLL such as sampler phase detector and Digital Controlled Oscillator (DCO) lead to unstable and chaotic operation when the filter gains are high. FPI will be used to stabilize the chaotic operation and consequently extend the lock range of the loop. The proposed stabilized loop can work in higher filter gains which are needed for faster signal acquisition.展开更多
基金Supported by the Tsinghua National Laboratory for Information Science and Technology(TNList)Cross-Discipline Foundationthe National Science and Technology Major Project(No.2010ZX03006-003-01)
文摘Time-to-Digital Converter (TDC) is a key block used as the phase/frequency detector in an All-Digital Phase-Locked Loop (ADPLL). Usually, it occupies a large proportion of ADPLL's total power consumption up to about 30% to 40%. In this paper, the detailed power consumption of different components in the TDC is analyzed. A Power Management Block (PMB) is presented for the TDC to reduce its power consumption. A 24-bits TDC core with the proposed PMB is implemented in HJTC 0.18 μm CMOS technology. Simulation results show that up to 84% power reduction is achieved using our proposed technique.
文摘This paper deals with performance analysis and implementation of a three phase inverter fed induction motor (IM) drive system. The closed loop control scheme of the drive utilizes the Digital Phase Locked Loop (DPLL). The DPLL is safely implemented all around the well known integrated circuit DPLL 4046. An ex-perimental verification is carried out on one kw scalar controlled IM system drives for a wide range of speeds and loads appliance. This presents a simple and high performance solution for industrial applications.
文摘A low jitter All-Digital Phase-Locked Loop (ADPLL) used as a clock generator is designed. The Digital-Controlled Oscillator (DCO) for this ADPLL is a seven-stage ring oscillator with the delay of each stage changeable. Based on the Impulse Sensitivity Function (ISF) analysis, an effective way is proposed to reduce the ADPLL's jitter by the careful design of the sizes of the inverters used in the DCO with a simple architecture other than a complex one. The ADPLL is implemented in a 0.18μm CMOS process with 1.SV supply voltage, occupies 0.046mm^2 of on-chip area. According to the measured results, the ADPLL can operate from 108MHz to 304MHz, and the peak-to-peak jitter is 139ps when the DCO's output frequency is 188MHz.
文摘<div style="text-align:justify;"> We propose a novel scheme, based on digital-heterodyne optical phase-locked loop with whole-fiber circuit, to dynamically measure the free-spectral-range of a fiber resonator. The optical phase-locked loop is established with a differential frequency-modulation module consists of a pair of acousto-optic modulators. The resonance-tracking loop is derived with the Pound-Drever-Hall technique for locking the heterodyne frequency of the OPLL on the frequency difference between adjacent resonance modes. A stable locking accuracy of about 7 × 10<sup>?9</sup> and a dynamic locking accuracy of about 5 × 10<sup>?8</sup> are achieved with the FSR of 8.155 MHz, indicating a bias stability of the resonator fiber optic gyro of about 0.1?/h with 10 Hz bandwidth. In addition, the thermal drift coefficient of the FSR is measured as 0.1 Hz/?C. This shows remarkable potential for realizing advanced optical measurement systems, such as the resonant fiber optic gyro, and so on. </div>
文摘Zero Crossing Digital Phase Locked Loop with Arc Sine block (AS-ZCDPLL) is used to linearize the phase difference detection, and enhance the loop performance. The loop has faster acquisition, less steady state phase error, and wider locking range compared to the conventional ZCDPLL. This work presents a Zero Crossing Digital Phase Locked Loop with Arc Sine block (ZCDPLL-AS). The performance of the loop is analyzed under mobile faded channel conditions. The mobile channel is assumed to be two path fading channel corrupted by additive white Gaussian noise (AWGM). It is shown that for a constant filter gain, the frequency spread has no effect on the steady state phase error variance when the loop is subjected to a phase step. For a frequency step and under the same conditions, the effect on phase error is minimal.
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KJCX2-YW-N27)National Natural Science Foundation of China(Nos.11205153 and 11175176)
文摘A fully digital beam position monitoring system(DBPM) has been designed for SSRF(Shanghai Synchrotron Radiation Facility). As analog-to-digital converter(ADC) is a crucial part in the DBPM system, the sampling methods should be studied to achieve optimum performance. Different sampling modes were used and compared through tests. Long term variation among four sampling channels, which would introduce errors in beam position measurement, is investigated. An interleaved distribution scheme was designed to address this issue. To evaluate the sampling methods, in-beam tests were conducted in SSRF. Test results indicate that with proper sampling methods, a turn-by-turn(TBT) position resolution better than 1 μm is achieved, and the slow-acquisition(SA) position resolution is improved from 4.28 μm to 0.17 μm.
文摘This paper presents the architectures, algorithms, and implementation considerations of the digital phase locked loop (DPLL) used for burst-mode packet DS-CDMA receivers. As we know, carrier offset is a rather challenging problem in CDMA system. According to different applications, different DPLL forms should be adopted to correct different maximum carrier offset in CDMA systems. One classical DPLL and two novel DPLL forms are discussed in the paper. The acquisition range of carrier offset can be widened by using the two novel DPLL forms without any performance degradation such as longer acquisition time or larger variance of the phase error. The maximum acquisition range is 1/(4T), where T is the symbol period. The design can be implemented by FPGA directly.
文摘A True Random Binary Generator (TRBG) based on a zero crossing digital phase-locked loop (ZCDPLL) is proposed. In order to face the challenges of using the proposed TRBG in cryptography, the proposed TRBG is subjected to the AIS 31 test suite. The ZCDPLL operate as chaotic generator for certain loop filter gains and this has been used to generate TRBs. The generated binary sequences have a good autocorrelation and cross-correlation properties as seen from the simulation results. A prototype of TRBG using ZCDPLL has been developed through Texas Instruments TMS320C6416 DSP development kit. The proposed TRBG successfully passed the AIS 31 test suit.
文摘The stable operation of first and second order Zero Crossing Digital Phase Locked Loop (ZCDPLL) is extended by using a Fixed Point Iteration (FPI) method with relaxation. The non-linear components of ZCDPLL such as sampler phase detector and Digital Controlled Oscillator (DCO) lead to unstable and chaotic operation when the filter gains are high. FPI will be used to stabilize the chaotic operation and consequently extend the lock range of the loop. The proposed stabilized loop can work in higher filter gains which are needed for faster signal acquisition.