Background: When applied to trabecular bone X-ray images, the anisotropic properties of trabeculae located at ultra-distal radius were investigated by using the trabecular bone scores (TBS) calculated along directions...Background: When applied to trabecular bone X-ray images, the anisotropic properties of trabeculae located at ultra-distal radius were investigated by using the trabecular bone scores (TBS) calculated along directions parallel and perpendicular to the forearm. Methodology: Data from more than two hundred subjects were studied retrospectively. A DXA (GE Lunar Prodigy) scan of the forearm was performed on each subject to measure the bone mineral density (BMD) value at the location of ultra-distal radius, and an X-ray digital image of the same forearm was taken on the same day. The values of trabecular bone score along the direction perpendicular to the forearm, TBS<sub>x</sub>, and along the direction parallel to the forearm, TBS<sub>y</sub>, were calculated respectively. The statistics of TBS<sub>x</sub> and TBS<sub>y</sub> were calculated, and the anisotropy of the trabecular bone, which was defined as the ratio of TBS<sub>y</sub> to TBS<sub>x</sub> and changed with subjects’ BMD and age, was reported and analyzed. Results: The results show that the correlation coefficient between TBS<sub>x</sub> and TBS<sub>y</sub> was 0.72 (p BMD and age was reported. The results showed that decreased trabecular bone anisotropy was associated with deceased BMD and increased age in the subject group. Conclusions: This study shows that decreased trabecular bone anisotropy was associated with decreased BMD and increased age.展开更多
Aim of the present in vitro study is to evaluate the radiopacity levels of composite resins with various shades and viscosity.10 mm×2 mm discs were prepared from 7 condensable and 4 flowable composites(n=10).An a...Aim of the present in vitro study is to evaluate the radiopacity levels of composite resins with various shades and viscosity.10 mm×2 mm discs were prepared from 7 condensable and 4 flowable composites(n=10).An aluminum step wedge ranging from 2.0 to 10.0 mm in thickness was placed on the occlusal film.Digital radiographs were taken using a dental X-ray device and radiographic densities of each step of the aluminum wedge and the samples were recorded to the computer.Five readings were taken and means were calculated.One-Way Anova and Tamhane post hoc tests were performed.While G-eanial Posterior has the highest radiopacity value followed by Filtek Z550,Aelite Flo has the lowest radiopacity value.Posterior composites show higher radiopacity and flowable composites with higher filler loadings have superior radiopacity levels to condensable composites.Enamel and body shades of the composite brands have also statistically significant differences in radiopacity scores.Eventually,radiopacity level of a composite resin material is not affected by the size of fillers;however,the composition,shape and loading of the fillers can specify the radiodensity.展开更多
The computer evaluation of weld X-ray film is an attractive technique for weld seam NDT ( nondestructive testing). To achieve this target, digitalization of film is the first step and automatic defect identification...The computer evaluation of weld X-ray film is an attractive technique for weld seam NDT ( nondestructive testing). To achieve this target, digitalization of film is the first step and automatic defect identification is another key technique. In this paper, a weld X-ray film digitalizing system has been established with linear array CCD and highlight LED light source. Its space resolution can reach 0. 04 mm/pixel and scanning speed can reach 100 mm/s for an industrial film. The transfer function curves of the system have been measured and the results indicate that its image gray resolution can reach 88 G/D at 4. 5D, and its dynamic range can be wider than 2. OD. In order to facilitate the evaluation of large welded structure, a panoramic evaluation algorithm is developed also. The algorithm includes image matching, image fusion and panoramic evaluation of the long linked film image.展开更多
A high energy X-ray digital radiography(DR)nondestructive testing(NDT)system has been developed to detect the operating state of a driving mechanism.The system consists of five main subsystems,namely,X-ray generator,i...A high energy X-ray digital radiography(DR)nondestructive testing(NDT)system has been developed to detect the operating state of a driving mechanism.The system consists of five main subsystems,namely,X-ray generator,image intensifier,image processor,mechanical platform and control subsystem.Owning to the mechanical platform,the X-ray generator and image intensifier are able to rotate around the vertical axis from 0°to 360°in 35 s and move along vertical axis within the range of 500 mm in 20 s.The 450 kV X-ray generator provides a maximum 100 mm penetration depth and a coverage angle of 40°,and the resolution of the scanned image is 66 lp/cm.As is indicated by its applications,the system is featured with fast scanning speed,wide detection range and high imaging quality.It can be applied to inspect the defects in the driving mechanism as well.展开更多
Background: When applied to trabecular bone X-ray images, a method for analyzing trabecular bone texture based on the initial slope of variogram (ISV) was used to assess the trabecular bone health. Methodology: Data f...Background: When applied to trabecular bone X-ray images, a method for analyzing trabecular bone texture based on the initial slope of variogram (ISV) was used to assess the trabecular bone health. Methodology: Data from more than two hundred subjects were retrospectively studied. For each subject, a DXA (GE Lunar Prodigy) scan of the forearm was performed, and bone mineral density (BMD) value was measured at the location of ultra-distal radius, X-ray digital image of the same forearm was taken on the same day, and ISV value over the same location of ultra-distal radius was calculated. Pearson’s correlation coefficients were calculated to examine the correlation between BMD and ISV of the trabecular bones located at the same ultra-distal radius. ISV values changed with subjects’ age were also reported. Results: The results show that ISV value was highly correlated with the DXA-measured BMD of the same trabecular bone located at the ultra-distal radius. The correlation coefficient between ISV and BMD with the 95% confident was 0.79 ± 0.09. They also demonstrated that the age-related changes in trabecular bone health and differentiated age patterns in males and females, respectively. The results showed that the decrease in BMD was accompanied by a decrease in the initial slope of variogram (ISV). Conclusions: This study suggests that ISV might be used to quantitatively evaluate trabecular health for osteoporosis and bone disease diagnosis.展开更多
It is always desirable to know the interior deformation pattern when a rock is subjected to mechanicalload. Few experimental techniques exist that can represent full-field three-dimensional (3D) straindistribution i...It is always desirable to know the interior deformation pattern when a rock is subjected to mechanicalload. Few experimental techniques exist that can represent full-field three-dimensional (3D) straindistribution inside a rock specimen. And yet it is crucial that this information is available for fully understandingthe failure mechanism of rocks or other geomaterials. In this study, by using the newlydeveloped digital volumetric speckle photography (DVSP) technique in conjunction with X-ray computedtomography (CT) and taking advantage of natural 3D speckles formed inside the rock due to materialimpurities and voids, we can probe the interior of a rock to map its deformation pattern under load andshed light on its failure mechanism. We apply this technique to the analysis of a red sandstone specimenunder increasing uniaxial compressive load applied incrementally. The full-field 3D displacement fieldsare obtained in the specimen as a function of the load, from which both the volumetric and the deviatoricstrain fields are calculated. Strain localization zones which lead to the eventual failure of the rock areidentified. The results indicate that both shear and tension are contributing factors to the failuremechanism. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
Assessment of entrance skin doses for patients in Digital radiography examinations should be made as a means for the optimization of the radiation protection of the patients. We measured the entrance skin dose (ESD) r...Assessment of entrance skin doses for patients in Digital radiography examinations should be made as a means for the optimization of the radiation protection of the patients. We measured the entrance skin dose (ESD) received by 50 pediatrics undergoing 12 types of diagnostic X-ray examination at Radiology Department of Asser Central Hospital-KSA. The entrance skin dose ESD was determined via measurements parameters: focus to skin distance (FSD), tube current (mAs) and tube voltage (kV) in arithmetical equation. The mean ± SD for ESDs were found to be 0.16 ± 0.03, 0.21 ± 0.01, 0.63 ± 0.26, 0.55 ± 0.09, 0.15 ± 0.05, 0.27 ± 0.06, 0.41 ± 0.19, 0.46 ± 0.18, 0.46 ± 0.12, 0.20 ± 0.02, 0.39 ± 0.01, 0.29 ± 0.03, for PA chest, foot, AP pelvis, PA skull, PA hand, AP arm, ankle, AP shoulder, abdomen, forearm, AP femur, AP elbow consequently. Our study is considered as an attempt to evaluate the ESDs received by digital radiographic x-ray machine for children aged between 2 - 15 years old, taking in our considerations number of other variables. The mean ESD values obtained are found to be within the standard reference. The data obtained may add to the available information in national records for general use. It may provide guidance on where efforts on dose reduction will need to be directed to fulfill the requirements of the optimization process and serve as a reference for future researches.展开更多
Rheumatoid arthritis is a chronic multisystem disease of unknown cause. The characteristic feature of RA is persistent inflammatory synovitis. The natural history of disease is such that the early months of the diseas...Rheumatoid arthritis is a chronic multisystem disease of unknown cause. The characteristic feature of RA is persistent inflammatory synovitis. The natural history of disease is such that the early months of the disease are critical period during which reversible joint damage occurs. So early diagnosis of RA and appropriate drug application is the only way to save a patient from this crippling disease. In India, the cost of investigations is a significant factor for most of the patients. Ultrasonography or Power Doppler Ultra Sound (PDUS) has the advantage of being economic in spite of its sensitivity in assessing both inflammatory and destructive changes. The aim of the present study was to evaluate the diagnostic efficiency of PDUS in early rheumatoid arthritis. The study was performed with the patients attending Rheumatology Clinic. A total number of 106 patients of clinically suspected rheumatoid arthritis were studied as per selection criteria. Radiological examinations of hands were done by digital radiography and PDUS in a group of 53 patients, assessment of foot changes by PDUS and Digital Radiography were done in another similar group of 53 patients. Final diagnosis by ACR EULAR-2010 criteria is done for all the patients. The comparative study reveals that synovial vascularity as demonstrated by PDUS is much more effective in diagnosing early rheumatoid arthritis, both in hand and in feet than digital radiograph. PDUS of feet may yield earlier and better findings than hands, which is conventionally used in patients suffering from early rheumatoid arthritis.展开更多
Objective: To explore the clinical value of X-ray digital tomosynthesis(DTS)in the diagnosis of knee joint fractures. Methods: A total of 28 cases of thoracic trauma, X-ray film cannot be clearly diagnosed or can conf...Objective: To explore the clinical value of X-ray digital tomosynthesis(DTS)in the diagnosis of knee joint fractures. Methods: A total of 28 cases of thoracic trauma, X-ray film cannot be clearly diagnosed or can confirm the diagnosis but the need for further identification of forensic diagnosis of cases of DTS scan and three-dimensional reconstruction in order to control the study. Results: 1. The reconstructed images after DTS scanning showed that the knee joint fractures were clearly diagnosed, and the detection rate of 28 knee joint fractures was 92.86%. 2. DTS scanning could clearly detect the fresh knee joint fracture's fracture line, corresponding line and broken bones. For the old fracture, DTS scanning could clearly show the condition of the fracture end's healing. Conclusions: The technique is of great value in the diagnosis of knee joint fracture, especially in the examination of complex structure, thick body and review of internal fixation after fracture.展开更多
X-ray digital imaging technology has found wide application owing to its advantages of real-time, visualization and rapid imaging. In substations the substantial electromagnetic interference has some influence on the ...X-ray digital imaging technology has found wide application owing to its advantages of real-time, visualization and rapid imaging. In substations the substantial electromagnetic interference has some influence on the live detection by the X-ray digital imaging technology, hindering the promotion of the technology in the detection of electric equipment. Based on a large number of field tests, the author carded out a series of researches on electromagnetic interference protection measures, image de-noising, and image enhancement algorithms.展开更多
Accurate 3-dimensional(3-D)reconstruction technology for nondestructive testing based on digital radiography(DR)is of great importance for alleviating the drawbacks of the existing computed tomography(CT)-based method...Accurate 3-dimensional(3-D)reconstruction technology for nondestructive testing based on digital radiography(DR)is of great importance for alleviating the drawbacks of the existing computed tomography(CT)-based method.The commonly used Monte Carlo simulation method ensures well-performing imaging results for DR.However,for 3-D reconstruction,it is limited by its high time consumption.To solve this problem,this study proposes a parallel computing method to accelerate Monte Carlo simulation for projection images with a parallel interface and a specific DR application.The images are utilized for 3-D reconstruction of the test model.We verify the accuracy of parallel computing for DR and evaluate the performance of two parallel computing modes-multithreaded applications(G4-MT)and message-passing interfaces(G4-MPI)-by assessing parallel speedup and efficiency.This study explores the scalability of the hybrid G4-MPI and G4-MT modes.The results show that the two parallel computing modes can significantly reduce the Monte Carlo simulation time because the parallel speedup increment of Monte Carlo simulations can be considered linear growth,and the parallel efficiency is maintained at a high level.The hybrid mode has strong scalability,as the overall run time of the 180 simulations using 320 threads is 15.35 h with 10 billion particles emitted,and the parallel speedup can be up to 151.36.The 3-D reconstruction of the model is achieved based on the filtered back projection(FBP)algorithm using 180 projection images obtained with the hybrid G4-MPI and G4-MT.The quality of the reconstructed sliced images is satisfactory because the images can reflect the internal structure of the test model.This method is applied to a complex model,and the quality of the reconstructed images is evaluated.展开更多
Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evol...Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evolution of Sn anode during lithiation and delithiation,synchrotron X-ray energydispersive diffraction and X-ray tomography are simultaneously employed during Li/Sn cell operation.The intermediate Li-Sn alloy phases during de/lithiation are identified,and their dynamic phase transformation is unraveled which is further correlated with the volume variation of the Sn at particle-and electrode-level.Moreover,we find that the Sn particle expansion/shrinkage induced particle displacement is anisotropic:the displacement perpendicular to the electrode surface(z-axis)is more pronounced compared to the directions(x-and y-axis)along the electrode surface.This anisotropic particle displacement leads to an anisotropic volume variation at the electrode level and eventually generates a net electrode expansion towards the separator after cycling,which could be one of the root causes of mechanical detachment and delamination of electrodes during long-term operation.The unraveled chemical evolution of Li-Sn and deep insights into the microstructural evolution of Sn anode provided here could guide future design and engineering of Sn and other alloy anodes for high energy density Li-and Na-ion batteries.展开更多
Background:As mammography X-ray imaging technologies advance and provide elevated contrast in soft tissues,a need has developed for reliable imaging phantoms for use in system design and component calibration.In advan...Background:As mammography X-ray imaging technologies advance and provide elevated contrast in soft tissues,a need has developed for reliable imaging phantoms for use in system design and component calibration.In advanced imaging modalities such as refraction-based methods,it is critical that developed phantoms capture the biological details seen in clinical precancerous and cancerous cases while minimizing artifacts that may be caused due to phantom production.This work presents the fabrication of a breast tissue imaging phantom from cadaveric breast tissue suitable for use in both transmission and refraction-enhanced imaging systems.Methods:Human cancer cell tumors were grown orthotopically in nude athymic mice and implanted into the fixed tissue while maintaining the native tumor/adipose tissue interface.Results:The resulting human–murine tissue hybrid phantom was mounted on a clear acrylic housing for absorption and refraction X-ray imaging.Digital breast tomosynthesis was also performed.Conclusion:Both attenuation-based imaging and refraction-based imaging of the phantom are presented to confirm the suitability of this phantom's use in both imaging modalities.展开更多
This paper reports on the results of calculations using a Monte Carlo code (MCNP5) to study the properties of photons, electrons and photoneutrons obtained in the converted target and their transportations in x-ray ...This paper reports on the results of calculations using a Monte Carlo code (MCNP5) to study the properties of photons, electrons and photoneutrons obtained in the converted target and their transportations in x-ray radiography. A comparison between measurements and calculations for bremsstrahlung and photoneutrons is presented. The radiographic rule and the effect of the collimator on the image are studied with the experimental model. The results provide exact parameters for the optimal design of radiographic layout and shielding systems.展开更多
In the present paper, the high velocity impact of 9 mm soft lead projectile on 10 mm and 30 mm thick Eglass/epoxy composites was studied using a 450 kV Flash X-ray radiography(FXR) system. The basic parameters of FXR ...In the present paper, the high velocity impact of 9 mm soft lead projectile on 10 mm and 30 mm thick Eglass/epoxy composites was studied using a 450 kV Flash X-ray radiography(FXR) system. The basic parameters of FXR imaging, such as effect of ratio of target to film(TF) and source to target(ST) distances and X-ray penetration thickness of the composite material were optimized based on clarity and the actual dimensions of the objects. The optimized parameters were used in the FXR imaging of the ballistic event of 9 mm soft projectile on E-glass/epoxy composite. The real time deformation patterns of both the projectile and composite target during the ballistic impact were captured and studied at different time intervals. The notable failure modes of the 10 mm thick target with time include fibre breakage, bulging on the back side, delamination, recovery of the bulging, reverse bulging and its recovery. However, with increase in thickness of the target to 30 mm the only failure mechanism observed is the breaking of fibres. The ballistic impact event was also numerically simulated using commercially available LS-DYNA software. The numerically simulated deformation patterns of the projectile and target at different time intervals are closely matching with the corresponding radiographic images.展开更多
Study on X-ray emission from a low energy (1.8 kJ) plasma focus devicepowered by a 9 μF capacitor bank, charged at 20 kV and giving peak discharge current of about 175kA by using a lead-inserted copper-tapered anode ...Study on X-ray emission from a low energy (1.8 kJ) plasma focus devicepowered by a 9 μF capacitor bank, charged at 20 kV and giving peak discharge current of about 175kA by using a lead-inserted copper-tapered anode is reported. The X-ray yield in different energywindows is measured as a function of hydrogen filling pressure. The maximum yield in 4π-geometry isfound to be (27.3+-1.1) J and corresponding wall plug efficiency for X-ray generation is 1.52+-0.06%. X-ray emission, presumably due to bombarding activity of electrons in current sheath at theanode tip was dominant, which is confirmed by the pinhole images. The feasibility of the device asan intense X-ray source for radiography is demonstrated.展开更多
Two methods of using the X-pinch as a source of X-ray radiation for radiography of biological objects are presented. X-pinches are found to be a very flexible method for generation of radiation over a wide spectral ra...Two methods of using the X-pinch as a source of X-ray radiation for radiography of biological objects are presented. X-pinches are found to be a very flexible method for generation of radiation over a wide spectral range and provide a high spatial and temporal resolution.展开更多
The main objective of this paper is to evaluate the effects of asphalt concrete types on the microstructural characteristics at high-temperature. Suspend-dense structure and Skeleton-dense structure were selected to i...The main objective of this paper is to evaluate the effects of asphalt concrete types on the microstructural characteristics at high-temperature. Suspend-dense structure and Skeleton-dense structure were selected to investigate the deformation of pavement at meso-scale. The internal microstructures of typical asphalt concretes, AC, SUP and SMA, were scanned by X-ray CT device, and microstructural changes before and after high-temperature damage were researched by digital image processing. Adaptive threshold segmentation algorithm(ATSA) based on image radius was developed and utilized to obtain the binary images of aggregates, air-voids and asphalt mastic. Then the shape and distribution of air-voids and aggregates were analyzed. The results show that the ATSA can distinguish the target and background effectively. Gradation and coarse aggregate size of asphalt mixtures have an obvious influence on the distribution of air-voids. The movements of aggregate particles are complex and aggregates with elliptic sharp show great rotation. The effect of gradation on microstructure during high-temperature damage promotes the research about the failure mechanism of asphalt concrete pavement.展开更多
Research has shown that chest radiography images of patients with different diseases, such as pneumonia, COVID-19, SARS, pneumothorax, etc., all exhibit some form of abnormality. Several deep learning techniques can b...Research has shown that chest radiography images of patients with different diseases, such as pneumonia, COVID-19, SARS, pneumothorax, etc., all exhibit some form of abnormality. Several deep learning techniques can be used to identify each of these anomalies in the chest x-ray images. Convolutional neural networks (CNNs) have shown great success in the fields of image recognition and image classification since there are numerous large-scale annotated image datasets available. The classification of medical images, particularly radiographic images, remains one of the biggest hurdles in medical diagnosis because of the restricted availability of annotated medical images. However, such difficulty can be solved by utilizing several deep learning strategies, including data augmentation and transfer learning. The aim was to build a model that would detect abnormalities in chest x-ray images with the highest probability. To do that, different models were built with different features. While making a CNN model, one of the main tasks is to tune the model by changing the hyperparameters and layers so that the model gives out good training and testing results. In our case, three different models were built, and finally, the last one gave out the best-predicted results. From that last model, we got 98% training accuracy, 84% validation, and 81% testing accuracy. The reason behind the final model giving out the best evaluation scores is that it was a well-fitted model. There was no overfitting or underfitting issues. Our aim with this project was to make a tool using the CNN model in R language, which will help detect abnormalities in radiography images. The tool will be able to detect diseases such as Pneumonia, Covid-19, Effusions, Infiltration, Pneumothorax, and others. Because of its high accuracy, this research chose to use supervised multi-class classification techniques as well as Convolutional Neural Networks (CNNs) to classify different chest x-ray images. CNNs are extremely efficient and successful at reducing the number of parameters while maintaining the quality of the primary model. CNNs are also trained to recognize the edges of various objects in any batch of images. CNNs automatically discover the relevant aspects in labeled data and learn the distinguishing features for each class by themselves.展开更多
14 MeV Fast neutrons has good penetrability and the 14 MeV fast neutron radiography can meet the need of Non-Destructive Test of the structure and lacuna of heavy-massive sample, whose shell is made of heavy metal and...14 MeV Fast neutrons has good penetrability and the 14 MeV fast neutron radiography can meet the need of Non-Destructive Test of the structure and lacuna of heavy-massive sample, whose shell is made of heavy metal and in which there are some hydrogen materials, and the study of fast neutron digital radiography just begins in China. By the use of a D-T accelerator, a digital imaging system made up of a fast neutron scintillation screen made of ZnS(Ag) and polypropylene, lens and a scientific grade CCD, the experimental study of fast neutron radiography has been done between 4.3×1010-6.8×1010 n/s of neutron yield. Some 14 MeV fast neutron digital radiographs have been gotten. According to experimental radiographs and their data, the performance of the fast neutron scintillation screen and the basic characters of 14 MeV fast neutron radiography are analyzed, and it is helpful for the further research.展开更多
文摘Background: When applied to trabecular bone X-ray images, the anisotropic properties of trabeculae located at ultra-distal radius were investigated by using the trabecular bone scores (TBS) calculated along directions parallel and perpendicular to the forearm. Methodology: Data from more than two hundred subjects were studied retrospectively. A DXA (GE Lunar Prodigy) scan of the forearm was performed on each subject to measure the bone mineral density (BMD) value at the location of ultra-distal radius, and an X-ray digital image of the same forearm was taken on the same day. The values of trabecular bone score along the direction perpendicular to the forearm, TBS<sub>x</sub>, and along the direction parallel to the forearm, TBS<sub>y</sub>, were calculated respectively. The statistics of TBS<sub>x</sub> and TBS<sub>y</sub> were calculated, and the anisotropy of the trabecular bone, which was defined as the ratio of TBS<sub>y</sub> to TBS<sub>x</sub> and changed with subjects’ BMD and age, was reported and analyzed. Results: The results show that the correlation coefficient between TBS<sub>x</sub> and TBS<sub>y</sub> was 0.72 (p BMD and age was reported. The results showed that decreased trabecular bone anisotropy was associated with deceased BMD and increased age in the subject group. Conclusions: This study shows that decreased trabecular bone anisotropy was associated with decreased BMD and increased age.
文摘Aim of the present in vitro study is to evaluate the radiopacity levels of composite resins with various shades and viscosity.10 mm×2 mm discs were prepared from 7 condensable and 4 flowable composites(n=10).An aluminum step wedge ranging from 2.0 to 10.0 mm in thickness was placed on the occlusal film.Digital radiographs were taken using a dental X-ray device and radiographic densities of each step of the aluminum wedge and the samples were recorded to the computer.Five readings were taken and means were calculated.One-Way Anova and Tamhane post hoc tests were performed.While G-eanial Posterior has the highest radiopacity value followed by Filtek Z550,Aelite Flo has the lowest radiopacity value.Posterior composites show higher radiopacity and flowable composites with higher filler loadings have superior radiopacity levels to condensable composites.Enamel and body shades of the composite brands have also statistically significant differences in radiopacity scores.Eventually,radiopacity level of a composite resin material is not affected by the size of fillers;however,the composition,shape and loading of the fillers can specify the radiodensity.
文摘The computer evaluation of weld X-ray film is an attractive technique for weld seam NDT ( nondestructive testing). To achieve this target, digitalization of film is the first step and automatic defect identification is another key technique. In this paper, a weld X-ray film digitalizing system has been established with linear array CCD and highlight LED light source. Its space resolution can reach 0. 04 mm/pixel and scanning speed can reach 100 mm/s for an industrial film. The transfer function curves of the system have been measured and the results indicate that its image gray resolution can reach 88 G/D at 4. 5D, and its dynamic range can be wider than 2. OD. In order to facilitate the evaluation of large welded structure, a panoramic evaluation algorithm is developed also. The algorithm includes image matching, image fusion and panoramic evaluation of the long linked film image.
文摘A high energy X-ray digital radiography(DR)nondestructive testing(NDT)system has been developed to detect the operating state of a driving mechanism.The system consists of five main subsystems,namely,X-ray generator,image intensifier,image processor,mechanical platform and control subsystem.Owning to the mechanical platform,the X-ray generator and image intensifier are able to rotate around the vertical axis from 0°to 360°in 35 s and move along vertical axis within the range of 500 mm in 20 s.The 450 kV X-ray generator provides a maximum 100 mm penetration depth and a coverage angle of 40°,and the resolution of the scanned image is 66 lp/cm.As is indicated by its applications,the system is featured with fast scanning speed,wide detection range and high imaging quality.It can be applied to inspect the defects in the driving mechanism as well.
文摘Background: When applied to trabecular bone X-ray images, a method for analyzing trabecular bone texture based on the initial slope of variogram (ISV) was used to assess the trabecular bone health. Methodology: Data from more than two hundred subjects were retrospectively studied. For each subject, a DXA (GE Lunar Prodigy) scan of the forearm was performed, and bone mineral density (BMD) value was measured at the location of ultra-distal radius, X-ray digital image of the same forearm was taken on the same day, and ISV value over the same location of ultra-distal radius was calculated. Pearson’s correlation coefficients were calculated to examine the correlation between BMD and ISV of the trabecular bones located at the same ultra-distal radius. ISV values changed with subjects’ age were also reported. Results: The results show that ISV value was highly correlated with the DXA-measured BMD of the same trabecular bone located at the ultra-distal radius. The correlation coefficient between ISV and BMD with the 95% confident was 0.79 ± 0.09. They also demonstrated that the age-related changes in trabecular bone health and differentiated age patterns in males and females, respectively. The results showed that the decrease in BMD was accompanied by a decrease in the initial slope of variogram (ISV). Conclusions: This study suggests that ISV might be used to quantitatively evaluate trabecular health for osteoporosis and bone disease diagnosis.
基金financially supported by National Basic Research Program of China (973 Program) (No. 2010CB732002)National Natural Science Foundation of China (Nos. 51374211, 51374215)+1 种基金National Key Foundation for Exploring Scientific Instrument of China (No. 2013YQ240803)Fundamental Research Funds for the Central Universities (No. 2009QM02)
文摘It is always desirable to know the interior deformation pattern when a rock is subjected to mechanicalload. Few experimental techniques exist that can represent full-field three-dimensional (3D) straindistribution inside a rock specimen. And yet it is crucial that this information is available for fully understandingthe failure mechanism of rocks or other geomaterials. In this study, by using the newlydeveloped digital volumetric speckle photography (DVSP) technique in conjunction with X-ray computedtomography (CT) and taking advantage of natural 3D speckles formed inside the rock due to materialimpurities and voids, we can probe the interior of a rock to map its deformation pattern under load andshed light on its failure mechanism. We apply this technique to the analysis of a red sandstone specimenunder increasing uniaxial compressive load applied incrementally. The full-field 3D displacement fieldsare obtained in the specimen as a function of the load, from which both the volumetric and the deviatoricstrain fields are calculated. Strain localization zones which lead to the eventual failure of the rock areidentified. The results indicate that both shear and tension are contributing factors to the failuremechanism. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
文摘Assessment of entrance skin doses for patients in Digital radiography examinations should be made as a means for the optimization of the radiation protection of the patients. We measured the entrance skin dose (ESD) received by 50 pediatrics undergoing 12 types of diagnostic X-ray examination at Radiology Department of Asser Central Hospital-KSA. The entrance skin dose ESD was determined via measurements parameters: focus to skin distance (FSD), tube current (mAs) and tube voltage (kV) in arithmetical equation. The mean ± SD for ESDs were found to be 0.16 ± 0.03, 0.21 ± 0.01, 0.63 ± 0.26, 0.55 ± 0.09, 0.15 ± 0.05, 0.27 ± 0.06, 0.41 ± 0.19, 0.46 ± 0.18, 0.46 ± 0.12, 0.20 ± 0.02, 0.39 ± 0.01, 0.29 ± 0.03, for PA chest, foot, AP pelvis, PA skull, PA hand, AP arm, ankle, AP shoulder, abdomen, forearm, AP femur, AP elbow consequently. Our study is considered as an attempt to evaluate the ESDs received by digital radiographic x-ray machine for children aged between 2 - 15 years old, taking in our considerations number of other variables. The mean ESD values obtained are found to be within the standard reference. The data obtained may add to the available information in national records for general use. It may provide guidance on where efforts on dose reduction will need to be directed to fulfill the requirements of the optimization process and serve as a reference for future researches.
文摘Rheumatoid arthritis is a chronic multisystem disease of unknown cause. The characteristic feature of RA is persistent inflammatory synovitis. The natural history of disease is such that the early months of the disease are critical period during which reversible joint damage occurs. So early diagnosis of RA and appropriate drug application is the only way to save a patient from this crippling disease. In India, the cost of investigations is a significant factor for most of the patients. Ultrasonography or Power Doppler Ultra Sound (PDUS) has the advantage of being economic in spite of its sensitivity in assessing both inflammatory and destructive changes. The aim of the present study was to evaluate the diagnostic efficiency of PDUS in early rheumatoid arthritis. The study was performed with the patients attending Rheumatology Clinic. A total number of 106 patients of clinically suspected rheumatoid arthritis were studied as per selection criteria. Radiological examinations of hands were done by digital radiography and PDUS in a group of 53 patients, assessment of foot changes by PDUS and Digital Radiography were done in another similar group of 53 patients. Final diagnosis by ACR EULAR-2010 criteria is done for all the patients. The comparative study reveals that synovial vascularity as demonstrated by PDUS is much more effective in diagnosing early rheumatoid arthritis, both in hand and in feet than digital radiograph. PDUS of feet may yield earlier and better findings than hands, which is conventionally used in patients suffering from early rheumatoid arthritis.
文摘Objective: To explore the clinical value of X-ray digital tomosynthesis(DTS)in the diagnosis of knee joint fractures. Methods: A total of 28 cases of thoracic trauma, X-ray film cannot be clearly diagnosed or can confirm the diagnosis but the need for further identification of forensic diagnosis of cases of DTS scan and three-dimensional reconstruction in order to control the study. Results: 1. The reconstructed images after DTS scanning showed that the knee joint fractures were clearly diagnosed, and the detection rate of 28 knee joint fractures was 92.86%. 2. DTS scanning could clearly detect the fresh knee joint fracture's fracture line, corresponding line and broken bones. For the old fracture, DTS scanning could clearly show the condition of the fracture end's healing. Conclusions: The technique is of great value in the diagnosis of knee joint fracture, especially in the examination of complex structure, thick body and review of internal fixation after fracture.
文摘X-ray digital imaging technology has found wide application owing to its advantages of real-time, visualization and rapid imaging. In substations the substantial electromagnetic interference has some influence on the live detection by the X-ray digital imaging technology, hindering the promotion of the technology in the detection of electric equipment. Based on a large number of field tests, the author carded out a series of researches on electromagnetic interference protection measures, image de-noising, and image enhancement algorithms.
基金the China Natural Science Fund(No.52171253)the Natural Science Foundation of Sichuan(No.2022NSFSCO949).
文摘Accurate 3-dimensional(3-D)reconstruction technology for nondestructive testing based on digital radiography(DR)is of great importance for alleviating the drawbacks of the existing computed tomography(CT)-based method.The commonly used Monte Carlo simulation method ensures well-performing imaging results for DR.However,for 3-D reconstruction,it is limited by its high time consumption.To solve this problem,this study proposes a parallel computing method to accelerate Monte Carlo simulation for projection images with a parallel interface and a specific DR application.The images are utilized for 3-D reconstruction of the test model.We verify the accuracy of parallel computing for DR and evaluate the performance of two parallel computing modes-multithreaded applications(G4-MT)and message-passing interfaces(G4-MPI)-by assessing parallel speedup and efficiency.This study explores the scalability of the hybrid G4-MPI and G4-MT modes.The results show that the two parallel computing modes can significantly reduce the Monte Carlo simulation time because the parallel speedup increment of Monte Carlo simulations can be considered linear growth,and the parallel efficiency is maintained at a high level.The hybrid mode has strong scalability,as the overall run time of the 180 simulations using 320 threads is 15.35 h with 10 billion particles emitted,and the parallel speedup can be up to 151.36.The 3-D reconstruction of the model is achieved based on the filtered back projection(FBP)algorithm using 180 projection images obtained with the hybrid G4-MPI and G4-MT.The quality of the reconstructed sliced images is satisfactory because the images can reflect the internal structure of the test model.This method is applied to a complex model,and the quality of the reconstructed images is evaluated.
基金sponsored by the Helmholtz Association,the China Scholarship Council(CSC)partially funded by the German Research Foundation,DFG(Project No.MA 5039/4-1)。
文摘Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evolution of Sn anode during lithiation and delithiation,synchrotron X-ray energydispersive diffraction and X-ray tomography are simultaneously employed during Li/Sn cell operation.The intermediate Li-Sn alloy phases during de/lithiation are identified,and their dynamic phase transformation is unraveled which is further correlated with the volume variation of the Sn at particle-and electrode-level.Moreover,we find that the Sn particle expansion/shrinkage induced particle displacement is anisotropic:the displacement perpendicular to the electrode surface(z-axis)is more pronounced compared to the directions(x-and y-axis)along the electrode surface.This anisotropic particle displacement leads to an anisotropic volume variation at the electrode level and eventually generates a net electrode expansion towards the separator after cycling,which could be one of the root causes of mechanical detachment and delamination of electrodes during long-term operation.The unraveled chemical evolution of Li-Sn and deep insights into the microstructural evolution of Sn anode provided here could guide future design and engineering of Sn and other alloy anodes for high energy density Li-and Na-ion batteries.
基金National Institutes of Health,Grant/Award Number:EB023969 and HL154687。
文摘Background:As mammography X-ray imaging technologies advance and provide elevated contrast in soft tissues,a need has developed for reliable imaging phantoms for use in system design and component calibration.In advanced imaging modalities such as refraction-based methods,it is critical that developed phantoms capture the biological details seen in clinical precancerous and cancerous cases while minimizing artifacts that may be caused due to phantom production.This work presents the fabrication of a breast tissue imaging phantom from cadaveric breast tissue suitable for use in both transmission and refraction-enhanced imaging systems.Methods:Human cancer cell tumors were grown orthotopically in nude athymic mice and implanted into the fixed tissue while maintaining the native tumor/adipose tissue interface.Results:The resulting human–murine tissue hybrid phantom was mounted on a clear acrylic housing for absorption and refraction X-ray imaging.Digital breast tomosynthesis was also performed.Conclusion:Both attenuation-based imaging and refraction-based imaging of the phantom are presented to confirm the suitability of this phantom's use in both imaging modalities.
基金Project supported by the National Natural Science Foundation of China (Grant No.10576006)the Foundation of China Academy of Engineering Physics (Grant Nos.2007A01001 and 2009B0202020)
文摘This paper reports on the results of calculations using a Monte Carlo code (MCNP5) to study the properties of photons, electrons and photoneutrons obtained in the converted target and their transportations in x-ray radiography. A comparison between measurements and calculations for bremsstrahlung and photoneutrons is presented. The radiographic rule and the effect of the collimator on the image are studied with the experimental model. The results provide exact parameters for the optimal design of radiographic layout and shielding systems.
文摘In the present paper, the high velocity impact of 9 mm soft lead projectile on 10 mm and 30 mm thick Eglass/epoxy composites was studied using a 450 kV Flash X-ray radiography(FXR) system. The basic parameters of FXR imaging, such as effect of ratio of target to film(TF) and source to target(ST) distances and X-ray penetration thickness of the composite material were optimized based on clarity and the actual dimensions of the objects. The optimized parameters were used in the FXR imaging of the ballistic event of 9 mm soft projectile on E-glass/epoxy composite. The real time deformation patterns of both the projectile and composite target during the ballistic impact were captured and studied at different time intervals. The notable failure modes of the 10 mm thick target with time include fibre breakage, bulging on the back side, delamination, recovery of the bulging, reverse bulging and its recovery. However, with increase in thickness of the target to 30 mm the only failure mechanism observed is the breaking of fibres. The ballistic impact event was also numerically simulated using commercially available LS-DYNA software. The numerically simulated deformation patterns of the projectile and target at different time intervals are closely matching with the corresponding radiographic images.
基金This work was partially supported by Quaid-i-Azam University Research Grant, Ministry of Science & Technology Grant, Pakistan Science Foundation Project No. PSF/R&D/C-QU/Phys (199), Higher Education Commission Project for Plasma Physics, Pakistan Atomic
文摘Study on X-ray emission from a low energy (1.8 kJ) plasma focus devicepowered by a 9 μF capacitor bank, charged at 20 kV and giving peak discharge current of about 175kA by using a lead-inserted copper-tapered anode is reported. The X-ray yield in different energywindows is measured as a function of hydrogen filling pressure. The maximum yield in 4π-geometry isfound to be (27.3+-1.1) J and corresponding wall plug efficiency for X-ray generation is 1.52+-0.06%. X-ray emission, presumably due to bombarding activity of electrons in current sheath at theanode tip was dominant, which is confirmed by the pinhole images. The feasibility of the device asan intense X-ray source for radiography is demonstrated.
文摘Two methods of using the X-pinch as a source of X-ray radiation for radiography of biological objects are presented. X-pinches are found to be a very flexible method for generation of radiation over a wide spectral range and provide a high spatial and temporal resolution.
基金Funded by National Natural Science Foundation of China(No.51178114)the Fundamental Research Funds for the Central Universities(No.CXLX12_0117)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1318)
文摘The main objective of this paper is to evaluate the effects of asphalt concrete types on the microstructural characteristics at high-temperature. Suspend-dense structure and Skeleton-dense structure were selected to investigate the deformation of pavement at meso-scale. The internal microstructures of typical asphalt concretes, AC, SUP and SMA, were scanned by X-ray CT device, and microstructural changes before and after high-temperature damage were researched by digital image processing. Adaptive threshold segmentation algorithm(ATSA) based on image radius was developed and utilized to obtain the binary images of aggregates, air-voids and asphalt mastic. Then the shape and distribution of air-voids and aggregates were analyzed. The results show that the ATSA can distinguish the target and background effectively. Gradation and coarse aggregate size of asphalt mixtures have an obvious influence on the distribution of air-voids. The movements of aggregate particles are complex and aggregates with elliptic sharp show great rotation. The effect of gradation on microstructure during high-temperature damage promotes the research about the failure mechanism of asphalt concrete pavement.
文摘Research has shown that chest radiography images of patients with different diseases, such as pneumonia, COVID-19, SARS, pneumothorax, etc., all exhibit some form of abnormality. Several deep learning techniques can be used to identify each of these anomalies in the chest x-ray images. Convolutional neural networks (CNNs) have shown great success in the fields of image recognition and image classification since there are numerous large-scale annotated image datasets available. The classification of medical images, particularly radiographic images, remains one of the biggest hurdles in medical diagnosis because of the restricted availability of annotated medical images. However, such difficulty can be solved by utilizing several deep learning strategies, including data augmentation and transfer learning. The aim was to build a model that would detect abnormalities in chest x-ray images with the highest probability. To do that, different models were built with different features. While making a CNN model, one of the main tasks is to tune the model by changing the hyperparameters and layers so that the model gives out good training and testing results. In our case, three different models were built, and finally, the last one gave out the best-predicted results. From that last model, we got 98% training accuracy, 84% validation, and 81% testing accuracy. The reason behind the final model giving out the best evaluation scores is that it was a well-fitted model. There was no overfitting or underfitting issues. Our aim with this project was to make a tool using the CNN model in R language, which will help detect abnormalities in radiography images. The tool will be able to detect diseases such as Pneumonia, Covid-19, Effusions, Infiltration, Pneumothorax, and others. Because of its high accuracy, this research chose to use supervised multi-class classification techniques as well as Convolutional Neural Networks (CNNs) to classify different chest x-ray images. CNNs are extremely efficient and successful at reducing the number of parameters while maintaining the quality of the primary model. CNNs are also trained to recognize the edges of various objects in any batch of images. CNNs automatically discover the relevant aspects in labeled data and learn the distinguishing features for each class by themselves.
基金Supported by the Science and Technology Fund of China Academy of Engineering Physics (Grant No. 251)
文摘14 MeV Fast neutrons has good penetrability and the 14 MeV fast neutron radiography can meet the need of Non-Destructive Test of the structure and lacuna of heavy-massive sample, whose shell is made of heavy metal and in which there are some hydrogen materials, and the study of fast neutron digital radiography just begins in China. By the use of a D-T accelerator, a digital imaging system made up of a fast neutron scintillation screen made of ZnS(Ag) and polypropylene, lens and a scientific grade CCD, the experimental study of fast neutron radiography has been done between 4.3×1010-6.8×1010 n/s of neutron yield. Some 14 MeV fast neutron digital radiographs have been gotten. According to experimental radiographs and their data, the performance of the fast neutron scintillation screen and the basic characters of 14 MeV fast neutron radiography are analyzed, and it is helpful for the further research.