The Autonomous Underwater Glider(AUG)is a kind of prevailing underwater intelligent internet vehicle and occupies a dominant position in industrial applications,in which path planning is an essential problem.Due to th...The Autonomous Underwater Glider(AUG)is a kind of prevailing underwater intelligent internet vehicle and occupies a dominant position in industrial applications,in which path planning is an essential problem.Due to the complexity and variability of the ocean,accurate environment modeling and flexible path planning algorithms are pivotal challenges.The traditional models mainly utilize mathematical functions,which are not complete and reliable.Most existing path planning algorithms depend on the environment and lack flexibility.To overcome these challenges,we propose a path planning system for underwater intelligent internet vehicles.It applies digital twins and sensor data to map the real ocean environment to a virtual digital space,which provides a comprehensive and reliable environment for path simulation.We design a value-based reinforcement learning path planning algorithm and explore the optimal network structure parameters.The path simulation is controlled by a closed-loop model integrated into the terminal vehicle through edge computing.The integration of state input enriches the learning of neural networks and helps to improve generalization and flexibility.The task-related reward function promotes the rapid convergence of the training.The experimental results prove that our reinforcement learning based path planning algorithm has great flexibility and can effectively adapt to a variety of different ocean conditions.展开更多
The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting sy...The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting systems stand out as the most crucial.However,despite their high degree of automation,the workload for operators has intensified owing to the surging volume of express items.In the era of Industry 5.0,it is imperative to adopt new technologies that not only enhance worker welfare but also improve the efficiency of cross-belt systems.Striking a balance between efficiency in handling express items and operator well-being is challenging.Digital twin technology offers a promising solution in this respect.A realization method of a human-machine integrated digital twin is proposed in this study,enabling the interaction of biological human bodies,virtual human bodies,virtual equipment,and logistics equipment in a closed loop,thus setting an operating framework.Key technologies in the proposed framework include a collection of heterogeneous data from multiple sources,construction of the relationship between operator fatigue and operation efficiency based on physiological measurements,virtual model construction,and an online optimization module based on real-time simulation.The feasibility of the proposed method was verified in an express distribution center.展开更多
Effective engineering asset management(EAM)is critical to economic development and improving livability in society,but its complexity often impedes optimal asset functionalities.Digital twins(DTs)could revolutionize t...Effective engineering asset management(EAM)is critical to economic development and improving livability in society,but its complexity often impedes optimal asset functionalities.Digital twins(DTs)could revolutionize the EAM paradigm by bidirectionally linking the physical and digital worlds in real time.There is great industrial and academic interest in DTs for EAM.However,previous review studies have predominately focused on technical aspects using limited life-cycle perspectives,failing to holistically synthesize DTs for EAM from the managerial point of view.Based on a systematic literature review,we introduce an analytical framework for describing DTs for EAM,which encompasses three levels:DT 1.0 for technical EAM,DT 2.0 for technical-human EAM,and DT 3.0 for technical-environmental EAM.Using this framework,we identify what is known,what is unknown,and future directions at each level.DT 1.0 addresses issues of asset quality,progress,and cost management,generating technical value.It lacks multi-objective self-adaptive EAM,however,and suffers from high application cost.It is imperative to enable closed-loop EAM in order to provide various functional services with affordable DT 1.0.DT 2.0 accommodates issues of human-machine symbiosis,safety,and flexibility management,generating managerial value beyond the technical performance improvement of engineering assets.However,DT 2.0 currently lacks the automation and security of human-machine interactions and the managerial value related to humans is not prominent enough.Future research needs to align technical and managerial value with highly automated and secure DT 2.0.DT 3.0 covers issues of participatory governance,organization management,sustainable development,and resilience enhancement,generating macro social value.Yet it suffers from organizational fragmentation and can only address limited social governance issues.Numerous research opportunities exist to coordinate different stakeholders.Similarly,future research opportunities exist to develop DT 3.0 in a more open and complex system.展开更多
Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,...Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,we developed a reactor operation digital twin(RODT).However,non-differentiabilities and discontinuities arise when employing machine learning-based surrogate forward models,challenging traditional gradient-based inverse methods and their variants.This study investigated deterministic and metaheuristic algorithms and developed hybrid algorithms to address these issues.An efficient modular RODT software framework that incorporates these methods into its post-evaluation module is presented for comprehensive comparison.The methods were rigorously assessed based on convergence profiles,stability with respect to noise,and computational performance.The numerical results show that the hybrid KNNLHS algorithm excels in real-time online applications,balancing accuracy and efficiency with a prediction error rate of only 1%and processing times of less than 0.1 s.Contrastingly,algorithms such as FSA,DE,and ADE,although slightly slower(approximately 1 s),demonstrated higher accuracy with a 0.3%relative L_2 error,which advances RODT methodologies to harness machine learning and system modeling for improved reactor monitoring,systematic diagnosis of off-normal events,and lifetime management strategies.The developed modular software and novel optimization methods presented offer pathways to realize the full potential of RODT for transforming energy engineering practices.展开更多
With the continuous breakthrough in information technology and its integration into practical applications, industrial digital twins are expected to accelerate their development in the near future. This paper studies ...With the continuous breakthrough in information technology and its integration into practical applications, industrial digital twins are expected to accelerate their development in the near future. This paper studies various control strategies for digital twin systems from the viewpoint of practical applications.To make full use of advantages of digital twins for control systems, an architecture of digital twin control systems, adaptive model tracking scheme, performance prediction scheme, performance retention scheme, and fault tolerant control scheme are proposed. Those schemes are detailed to deal with different issues on model tracking, performance prediction, performance retention, and fault tolerant control of digital twin systems. Also, the stability of digital twin control systems is analysed. The proposed schemes for digital twin control systems are illustrated by examples.展开更多
To ensure the safe operation of industrial digital twins network and avoid the harm to the system caused by hacker invasion,a series of discussions on network security issues are carried out based on game theory.From ...To ensure the safe operation of industrial digital twins network and avoid the harm to the system caused by hacker invasion,a series of discussions on network security issues are carried out based on game theory.From the perspective of the life cycle of network vulnerabilities,mining and repairing vulnerabilities are analyzed by applying evolutionary game theory.The evolution process of knowledge sharing among white hats under various conditions is simulated,and a game model of the vulnerability patch cooperative development strategy among manufacturers is constructed.On this basis,the differential evolution is introduced into the update mechanism of the Wolf Colony Algorithm(WCA)to produce better replacement individuals with greater probability from the perspective of both attack and defense.Through the simulation experiment,it is found that the convergence speed of the probability(X)of white Hat 1 choosing the knowledge sharing policy is related to the probability(x0)of white Hat 2 choosing the knowledge sharing policy initially,and the probability(y0)of white hat 2 choosing the knowledge sharing policy initially.When y0?0.9,X converges rapidly in a relatively short time.When y0 is constant and x0 is small,the probability curve of the“cooperative development”strategy converges to 0.It is concluded that the higher the trust among the white hat members in the temporary team,the stronger their willingness to share knowledge,which is conducive to the mining of loopholes in the system.The greater the probability of a hacker attacking the vulnerability before it is fully disclosed,the lower the willingness of manufacturers to choose the"cooperative development"of vulnerability patches.Applying the improved wolf colonyco-evolution algorithm can obtain the equilibrium solution of the"attack and defense game model",and allocate the security protection resources according to the importance of nodes.This study can provide an effective solution to protect the network security for digital twins in the industry.展开更多
Digital twins and the physical assets of electric power systems face the potential risk of data loss and monitoring failures owing to catastrophic events,causing surveillance and energy loss.This study aims to refine ...Digital twins and the physical assets of electric power systems face the potential risk of data loss and monitoring failures owing to catastrophic events,causing surveillance and energy loss.This study aims to refine maintenance strategies for the monitoring of an electric power digital twin system post disasters.Initially,the research delineates the physical electric power system along with its digital counterpart and post-disaster restoration processes.Subsequently,it delves into communication and data processing mechanisms,specifically focusing on central data processing(CDP),communication routers(CRs),and phasor measurement units(PMUs),to re-establish an equipment recovery model based on these data transmission methodologies.Furthermore,it introduces a mathematical optimization model designed to enhance the digital twin system’s post-disaster monitoring efficacy by employing the branch-and-bound method for its resolution.The efficacy of the proposed model was corroborated by analyzing an IEEE-14 system.The findings suggest that the proposed branch-and-bound algorithm significantly augments the observational capabilities of a power system with limited resources,thereby bolstering its stability and emergency response mechanisms.展开更多
As autonomous vehicles and the other supporting infrastructures(e.g.,smart cities and intelligent transportation systems)become more commonplace,the Internet of Vehicles(IoV)is getting increasingly prevalent.There hav...As autonomous vehicles and the other supporting infrastructures(e.g.,smart cities and intelligent transportation systems)become more commonplace,the Internet of Vehicles(IoV)is getting increasingly prevalent.There have been attempts to utilize Digital Twins(DTs)to facilitate the design,evaluation,and deployment of IoV-based systems,for example by supporting high-fidelity modeling,real-time monitoring,and advanced predictive capabilities.However,the literature review undertaken in this paper suggests that integrating DTs into IoV-based system design and deployment remains an understudied topic.In addition,this paper explains how DTs can benefit IoV system designers and implementers,as well as describes several challenges and opportunities for future researchers.展开更多
The digital twins concept enhances modeling and simulation through the integration of real-time data and feedback.This review elucidates the foundational elements of digital twins,covering their concept,entities,domai...The digital twins concept enhances modeling and simulation through the integration of real-time data and feedback.This review elucidates the foundational elements of digital twins,covering their concept,entities,domains,and key technologies.More specifically,we investigate the transformative potential of digital twins for the wastewater treatment engineering sector.Our discussion highlights the application of digital twins to wastewater treatment plants(WWTPs)and sewage networks,hardware(i.e.,facilities and pipes,sensors for water quality and activated sludge,hydrodynamics,and power consumption),and software(i.e.,knowledge-based and data-driven models,mechanistic models,hybrid twins,control methods,and the Internet of Things).Furthermore,two cases are provided,followed by an assessment of current challenges in and perspectives on the application of digital twins in WWTPs.This review serves as an essential primer for wastewater engineers navigating the digital paradigm shift.展开更多
In this work,Digital Twins based on Neural Networks for the steady state production of styrene were generated.Thus,both the Aspen Technology AI Model Builder(alternative 1)and a homemade MS Excel VBA code connected to...In this work,Digital Twins based on Neural Networks for the steady state production of styrene were generated.Thus,both the Aspen Technology AI Model Builder(alternative 1)and a homemade MS Excel VBA code connected to Aspen HYSYS and Aspen Plus(alternative 2)were used with this same aim.The raw data used for generating the Digital Twins were obtained from process simulations using Aspen HYSYS and/or Aspen Plus,which were connected through a recycle-like stream via automation for solving the entire simulation flowsheet.Aspen HYSYS was used for solving the pre-heating,reaction,and stabilization sections of the process whereas Aspen Plus ensured the computing of the separation and purification columns.Both alternatives led to an excellent prediction showing the capability of creating Digital Twins from and for process simulation.展开更多
Smart energy monitoring and management system lays a foundation for the application and development of smart energy. However, in recent years, the work efficiency of smart energy development enterprises has generally ...Smart energy monitoring and management system lays a foundation for the application and development of smart energy. However, in recent years, the work efficiency of smart energy development enterprises has generally been low, and there is an urgent need to improve the application efficiency, resilience and sustainability of smart energy monitoring and management system. Digital twin technology provides a data-centric solution to improve smart energy monitoring and management system, bringing an opportunity to transform passive infrastructure assets into data-centric systems. This paper expounds on the concept and key technologies of digital twin, and designs a smart energy monitoring and management system based on digital twin technology, which has dual significance for promoting the development of smart energy field and promoting the application of digital twin.展开更多
The prognostics health management(PHM)fromthe systematic viewis critical to the healthy continuous operation of processmanufacturing systems(PMS),with different kinds of dynamic interference events.This paper proposes...The prognostics health management(PHM)fromthe systematic viewis critical to the healthy continuous operation of processmanufacturing systems(PMS),with different kinds of dynamic interference events.This paper proposes a three leveled digital twinmodel for the systematic PHMof PMSs.The unit-leveled digital twinmodel of each basic device unit of PMSs is constructed based on edge computing,which can provide real-time monitoring and analysis of the device status.The station-leveled digital twin models in the PMSs are designed to optimize and control the process parameters,which are deployed for the manufacturing execution on the fog server.The shop-leveled digital twin maintenancemodel is designed for production planning,which gives production instructions fromthe private industrial cloud server.To cope with the dynamic disturbances of a PMS,a big data-driven framework is proposed to control the three-level digital twin models,which contains indicator prediction,influence evaluation,and decisionmaking.Finally,a case study with a real chemical fiber system is introduced to illustrate the effectiveness of the digital twin model with edge-fog-cloud computing for the systematic PHM of PMSs.The result demonstrates that the three-leveled digital twin model for the systematic PHM in PMSs works well in the system’s respects.展开更多
To understand the current application and development of 3D modeling in Digital Twins(DTs),abundant literatures on DTs and 3D modeling are investigated by means of literature review.The transition process from 3D mode...To understand the current application and development of 3D modeling in Digital Twins(DTs),abundant literatures on DTs and 3D modeling are investigated by means of literature review.The transition process from 3D modeling to DTs modeling is analyzed,as well as the current application of DTs modeling in various industries.The application of 3D DTs modeling in theelds of smartmanufacturing,smart ecology,smart transportation,and smart buildings in smart cities is analyzed in detail,and the current limitations are summarized.It is found that the 3D modeling technology in DTs has broad prospects for development and has a huge impact on all walks of life and even human lifestyles.At the same time,the development of DTs modeling relies on the development and support capabilities of mature technologies such as Big Data,Internet of Things,Cloud Computing,Articial Intelligence,and game technology.Therefore,although some results have been achieved,there are still limitations.This work aims to provide a good theoretical support for the further development of 3D DTs modeling.展开更多
In order to improve the comprehensive defense capability of data security in digital twins(DTs),an information security interaction architecture is proposed in this paper to solve the inadequacy of data protection and...In order to improve the comprehensive defense capability of data security in digital twins(DTs),an information security interaction architecture is proposed in this paper to solve the inadequacy of data protection and transmission mechanism at present.Firstly,based on the advanced encryption standard(AES)encryption,we use the keystore to expand the traditional key,and use the digital pointer to avoid the key transmission in a wireless channel.Secondly,the identity authentication technology is adopted to ensure the data integrity,and an automatic retransmission mechanism is added for the endogenous properties of the wireless channel.Finally,the software defined radio(SDR)platform composed of universal software radio peripheral(USRP)and GNU radio is used to simulate the data interaction between the physical entity and the virtual entity.The numerical results show that the DTs architecture can guarantee the encrypted data transmitted completely and decrypted accurately with high efficiency and reliability,thus providing a basis for intelligent and secure information interaction for DTs in the future.展开更多
As one of the most important applications of digitalization,intelligence,and service,the digital twin(DT)breaks through the constraints of time,space,cost,and security on physical entities,expands and optimizes the re...As one of the most important applications of digitalization,intelligence,and service,the digital twin(DT)breaks through the constraints of time,space,cost,and security on physical entities,expands and optimizes the relevant functions of physical entities,and enhances their application value.This phenomenon has been widely studied in academia and industry.In this study,the concept and definition of DT,as utilized by scholars and researchers in various fields of industry,are summarized.The internal association between DT and related technologies is explained.The four stages of DT development history are identified.The fundamentals of the technology,evaluation indexes,and model frameworks are reviewed.Subsequently,a conceptual ternary model of DT based on time,space,and logic is proposed.The technology and application status of typical DT systems are described.Finally,the current technical challenges of DT technology are analyzed,and directions for future development are discussed.展开更多
This study presents a robustness optimization method for rapid prototyping(RP)of functional artifacts based on visualized computing digital twins(VCDT).A generalized multiobjective robustness optimization model for RP...This study presents a robustness optimization method for rapid prototyping(RP)of functional artifacts based on visualized computing digital twins(VCDT).A generalized multiobjective robustness optimization model for RP of scheme design prototype was first built,where thermal,structural,and multidisciplinary knowledge could be integrated for visualization.To implement visualized computing,the membership function of fuzzy decision-making was optimized using a genetic algorithm.Transient thermodynamic,structural statics,and flow field analyses were conducted,especially for glass fiber composite materials,which have the characteristics of high strength,corrosion resistance,temperature resistance,dimensional stability,and electrical insulation.An electrothermal experiment was performed by measuring the temperature and changes in temperature during RP.Infrared thermographs were obtained using thermal field measurements to determine the temperature distribution.A numerical analysis of a lightweight ribbed ergonomic artifact is presented to illustrate the VCDT.Moreover,manufacturability was verified based on a thermal-solid coupled finite element analysis.The physical experiment and practice proved that the proposed VCDT provided a robust design paradigm for a layered RP between the steady balance of electrothermal regulation and manufacturing efficacy under hybrid uncertainties.展开更多
Digital twins for wide-areas(DT-WA)can model and predict the physical world with high fidelity by incorporating an artificial intelligence(AI)model.However,the AI model requires an energy-consuming updating process to...Digital twins for wide-areas(DT-WA)can model and predict the physical world with high fidelity by incorporating an artificial intelligence(AI)model.However,the AI model requires an energy-consuming updating process to keep pace with the dynamic environment,where studies are still in infancy.To reduce the updating energy,this paper proposes a distributed edge cooperation and data collection scheme.The AI model is partitioned into multiple sub-models deployed on different edge servers(ESs)co-located with access points across wide-area,to update distributively using local sensor data.To reduce the updating energy,ESs can choose to become either updating helpers or recipients of their neighboring ESs,based on sensor quantities and basic updating convergencies.Helpers would share their updated sub-model parameters with neighboring recipients,so as to reduce the latter updating workload.To minimize system energy under updating convergency and latency constraints,we further propose an algorithm to let ESs distributively optimize their cooperation identities,collect sensor data,and allocate wireless and computing resources.It comprises several constraint-release approaches,where two child optimization problems are solved,and designs a largescale multi-agent deep reinforcement learning algorithm.Simulation shows that the proposed scheme can efficiently reduce updating energy compared with the baselines.展开更多
Natural disaster risk monitoring is an important task for disaster prevention and reduction.In the case of immovable cultural relics,however,the feedback mechanism,risk factors,monitoring logic,and monitoring indicato...Natural disaster risk monitoring is an important task for disaster prevention and reduction.In the case of immovable cultural relics,however,the feedback mechanism,risk factors,monitoring logic,and monitoring indicators of natural disaster risk monitoring are complex.How to achieve intelligent perception and monitoring of natural disaster risk for immovable cultural relics has always been a focus and a challenge for researchers.Based on the analysis of the concepts and issues related to the natural disaster risk of immovable cultural relics,this paper proposes a framework for natural disaster risk monitoring for immovable cultural relics based on the digital twin.This framework focuses on risk monitoring,including the physical entities of natural disaster risk for immovable cultural relics,monitoring indicators,and virtual entity construction.A platform for monitoring the natural disaster risk of immovable cultural relics is proposed.Using the Puzhou Ancient City Site as a test bed,the proposed concept can be used for monitoring the natural disaster risk of immovable cultural relics at different scales.展开更多
At present,the interpretation of regional economic development(RED)has changed from a simple evaluation of economic growth to a focus on economic growth and the optimization of economic structure,the improvement of ec...At present,the interpretation of regional economic development(RED)has changed from a simple evaluation of economic growth to a focus on economic growth and the optimization of economic structure,the improvement of economic relations,and the change of institutional innovation.This article uses the RED trend as the research object and constructs the RED index to conduct the theoretical analysis.Then this paper uses the attention mechanism based on digital twins and the time series network model to verify the actual data.Finally,the regional economy is predicted according to the theoretical model.The specific research work mainly includes the following aspects:1)This paper introduced the development status of research on time series networks and economic forecasting at home and abroad.2)This paper introduces the basic principles and structures of long and short-term memory(LSTM)and convolutional neural network(CNN),constructs an improved CNN-LSTM model combined with the attention mechanism,and then constructs a regional economic prediction index system.3)The best parameters of the model are selected through experiments,and the trained model is used for simulation experiment prediction.The results show that the CNN-LSTM model based on the attentionmechanism proposed in this paper has high accuracy in predicting regional economies.展开更多
Digital twins have emerged as a promising technology for maintenance applications,enabling organizations to simulate and monitor physical assets to improve their performance.In Operation and Maintenance(O&M),digit...Digital twins have emerged as a promising technology for maintenance applications,enabling organizations to simulate and monitor physical assets to improve their performance.In Operation and Maintenance(O&M),digital twin facilitates the diagnosis and prognosis of critical assets,forming the basis for smart maintenance planning and reducing downtime.However,there is a lack of standardized approaches for the qualifications of digital twins in maintenance,leading to low trustworthiness and limiting its application.This paper proposes a novel framework for the qualifications of digital twins in maintenance based on five pillars,namely fidelity,smartness,timeliness,integration,and standard compliance.We demonstrate the effectiveness of the framework through two case studies,showing how it can be implemented on digital twins for preventive maintenance and condition-based maintenance.Our proposed framework can help organizations across different industrial domains develop and implement digital twins in maintenance more effectively and efficiently,leading to significant benefits in terms of cost reduction,performance improvement,and sustainability.展开更多
基金supported by the National Natural Science Foundation of China(No.61871283).
文摘The Autonomous Underwater Glider(AUG)is a kind of prevailing underwater intelligent internet vehicle and occupies a dominant position in industrial applications,in which path planning is an essential problem.Due to the complexity and variability of the ocean,accurate environment modeling and flexible path planning algorithms are pivotal challenges.The traditional models mainly utilize mathematical functions,which are not complete and reliable.Most existing path planning algorithms depend on the environment and lack flexibility.To overcome these challenges,we propose a path planning system for underwater intelligent internet vehicles.It applies digital twins and sensor data to map the real ocean environment to a virtual digital space,which provides a comprehensive and reliable environment for path simulation.We design a value-based reinforcement learning path planning algorithm and explore the optimal network structure parameters.The path simulation is controlled by a closed-loop model integrated into the terminal vehicle through edge computing.The integration of state input enriches the learning of neural networks and helps to improve generalization and flexibility.The task-related reward function promotes the rapid convergence of the training.The experimental results prove that our reinforcement learning based path planning algorithm has great flexibility and can effectively adapt to a variety of different ocean conditions.
基金Supported by National Natural Science Foundation of China(Grant No.52075036)Key Technologies Research and Development Program of China(Grant No.2022YFC3302204).
文摘The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting systems stand out as the most crucial.However,despite their high degree of automation,the workload for operators has intensified owing to the surging volume of express items.In the era of Industry 5.0,it is imperative to adopt new technologies that not only enhance worker welfare but also improve the efficiency of cross-belt systems.Striking a balance between efficiency in handling express items and operator well-being is challenging.Digital twin technology offers a promising solution in this respect.A realization method of a human-machine integrated digital twin is proposed in this study,enabling the interaction of biological human bodies,virtual human bodies,virtual equipment,and logistics equipment in a closed loop,thus setting an operating framework.Key technologies in the proposed framework include a collection of heterogeneous data from multiple sources,construction of the relationship between operator fatigue and operation efficiency based on physiological measurements,virtual model construction,and an online optimization module based on real-time simulation.The feasibility of the proposed method was verified in an express distribution center.
基金supported by the National Natural Science Foundation of China(72001160)the National Social Science Fund of China(19VDL001 and 18ZDA043)+2 种基金the National Key Research and Development(R&D)Program of China(2022YFC3801700)the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement(101034337)the Support Program for Young and Middle-Tech Leading Talents of Tongji University.
文摘Effective engineering asset management(EAM)is critical to economic development and improving livability in society,but its complexity often impedes optimal asset functionalities.Digital twins(DTs)could revolutionize the EAM paradigm by bidirectionally linking the physical and digital worlds in real time.There is great industrial and academic interest in DTs for EAM.However,previous review studies have predominately focused on technical aspects using limited life-cycle perspectives,failing to holistically synthesize DTs for EAM from the managerial point of view.Based on a systematic literature review,we introduce an analytical framework for describing DTs for EAM,which encompasses three levels:DT 1.0 for technical EAM,DT 2.0 for technical-human EAM,and DT 3.0 for technical-environmental EAM.Using this framework,we identify what is known,what is unknown,and future directions at each level.DT 1.0 addresses issues of asset quality,progress,and cost management,generating technical value.It lacks multi-objective self-adaptive EAM,however,and suffers from high application cost.It is imperative to enable closed-loop EAM in order to provide various functional services with affordable DT 1.0.DT 2.0 accommodates issues of human-machine symbiosis,safety,and flexibility management,generating managerial value beyond the technical performance improvement of engineering assets.However,DT 2.0 currently lacks the automation and security of human-machine interactions and the managerial value related to humans is not prominent enough.Future research needs to align technical and managerial value with highly automated and secure DT 2.0.DT 3.0 covers issues of participatory governance,organization management,sustainable development,and resilience enhancement,generating macro social value.Yet it suffers from organizational fragmentation and can only address limited social governance issues.Numerous research opportunities exist to coordinate different stakeholders.Similarly,future research opportunities exist to develop DT 3.0 in a more open and complex system.
基金supported by the Natural Science Foundation of Shanghai(No.23ZR1429300)Innovation Funds of CNNC(Lingchuang Fund,Contract No.CNNC-LCKY-202234)the Project of the Nuclear Power Technology Innovation Center of Science Technology and Industry(No.HDLCXZX-2023-HD-039-02)。
文摘Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,we developed a reactor operation digital twin(RODT).However,non-differentiabilities and discontinuities arise when employing machine learning-based surrogate forward models,challenging traditional gradient-based inverse methods and their variants.This study investigated deterministic and metaheuristic algorithms and developed hybrid algorithms to address these issues.An efficient modular RODT software framework that incorporates these methods into its post-evaluation module is presented for comprehensive comparison.The methods were rigorously assessed based on convergence profiles,stability with respect to noise,and computational performance.The numerical results show that the hybrid KNNLHS algorithm excels in real-time online applications,balancing accuracy and efficiency with a prediction error rate of only 1%and processing times of less than 0.1 s.Contrastingly,algorithms such as FSA,DE,and ADE,although slightly slower(approximately 1 s),demonstrated higher accuracy with a 0.3%relative L_2 error,which advances RODT methodologies to harness machine learning and system modeling for improved reactor monitoring,systematic diagnosis of off-normal events,and lifetime management strategies.The developed modular software and novel optimization methods presented offer pathways to realize the full potential of RODT for transforming energy engineering practices.
基金supported in part by Shenzhen Key Laboratory of Control Theory and Intelligent Systems (ZDSYS20220330161800001)the National Natural Science Foundation of China (62173255, 62188101)。
文摘With the continuous breakthrough in information technology and its integration into practical applications, industrial digital twins are expected to accelerate their development in the near future. This paper studies various control strategies for digital twin systems from the viewpoint of practical applications.To make full use of advantages of digital twins for control systems, an architecture of digital twin control systems, adaptive model tracking scheme, performance prediction scheme, performance retention scheme, and fault tolerant control scheme are proposed. Those schemes are detailed to deal with different issues on model tracking, performance prediction, performance retention, and fault tolerant control of digital twin systems. Also, the stability of digital twin control systems is analysed. The proposed schemes for digital twin control systems are illustrated by examples.
文摘To ensure the safe operation of industrial digital twins network and avoid the harm to the system caused by hacker invasion,a series of discussions on network security issues are carried out based on game theory.From the perspective of the life cycle of network vulnerabilities,mining and repairing vulnerabilities are analyzed by applying evolutionary game theory.The evolution process of knowledge sharing among white hats under various conditions is simulated,and a game model of the vulnerability patch cooperative development strategy among manufacturers is constructed.On this basis,the differential evolution is introduced into the update mechanism of the Wolf Colony Algorithm(WCA)to produce better replacement individuals with greater probability from the perspective of both attack and defense.Through the simulation experiment,it is found that the convergence speed of the probability(X)of white Hat 1 choosing the knowledge sharing policy is related to the probability(x0)of white Hat 2 choosing the knowledge sharing policy initially,and the probability(y0)of white hat 2 choosing the knowledge sharing policy initially.When y0?0.9,X converges rapidly in a relatively short time.When y0 is constant and x0 is small,the probability curve of the“cooperative development”strategy converges to 0.It is concluded that the higher the trust among the white hat members in the temporary team,the stronger their willingness to share knowledge,which is conducive to the mining of loopholes in the system.The greater the probability of a hacker attacking the vulnerability before it is fully disclosed,the lower the willingness of manufacturers to choose the"cooperative development"of vulnerability patches.Applying the improved wolf colonyco-evolution algorithm can obtain the equilibrium solution of the"attack and defense game model",and allocate the security protection resources according to the importance of nodes.This study can provide an effective solution to protect the network security for digital twins in the industry.
基金supported by the State Grid Jilin Province Electric Power Co,Ltd-Research and Application of Power Grid Resilience Assessment and Coordinated Emergency Technology of Supply and Network for the Development of New Power System in Alpine Region(Project Number is B32342210001).
文摘Digital twins and the physical assets of electric power systems face the potential risk of data loss and monitoring failures owing to catastrophic events,causing surveillance and energy loss.This study aims to refine maintenance strategies for the monitoring of an electric power digital twin system post disasters.Initially,the research delineates the physical electric power system along with its digital counterpart and post-disaster restoration processes.Subsequently,it delves into communication and data processing mechanisms,specifically focusing on central data processing(CDP),communication routers(CRs),and phasor measurement units(PMUs),to re-establish an equipment recovery model based on these data transmission methodologies.Furthermore,it introduces a mathematical optimization model designed to enhance the digital twin system’s post-disaster monitoring efficacy by employing the branch-and-bound method for its resolution.The efficacy of the proposed model was corroborated by analyzing an IEEE-14 system.The findings suggest that the proposed branch-and-bound algorithm significantly augments the observational capabilities of a power system with limited resources,thereby bolstering its stability and emergency response mechanisms.
基金supported by the Natural Science Foundation of Jiangsu Province of China under grant no.BK20211284the Financial and Science Technology Plan Project of Xinjiang Production and Construction Corps under grant no.2020DB005.
文摘As autonomous vehicles and the other supporting infrastructures(e.g.,smart cities and intelligent transportation systems)become more commonplace,the Internet of Vehicles(IoV)is getting increasingly prevalent.There have been attempts to utilize Digital Twins(DTs)to facilitate the design,evaluation,and deployment of IoV-based systems,for example by supporting high-fidelity modeling,real-time monitoring,and advanced predictive capabilities.However,the literature review undertaken in this paper suggests that integrating DTs into IoV-based system design and deployment remains an understudied topic.In addition,this paper explains how DTs can benefit IoV system designers and implementers,as well as describes several challenges and opportunities for future researchers.
基金supported by the National Natural Science Foundation of China(52321005,52293443,and 52230004)the Shenzhen Science and Technology Program(KQTD20190929172630447)+1 种基金the Shenzhen Key Research Project(GXWD20220817145054002)the Talent Recruitment Project of Guandong(2021QN020106).
文摘The digital twins concept enhances modeling and simulation through the integration of real-time data and feedback.This review elucidates the foundational elements of digital twins,covering their concept,entities,domains,and key technologies.More specifically,we investigate the transformative potential of digital twins for the wastewater treatment engineering sector.Our discussion highlights the application of digital twins to wastewater treatment plants(WWTPs)and sewage networks,hardware(i.e.,facilities and pipes,sensors for water quality and activated sludge,hydrodynamics,and power consumption),and software(i.e.,knowledge-based and data-driven models,mechanistic models,hybrid twins,control methods,and the Internet of Things).Furthermore,two cases are provided,followed by an assessment of current challenges in and perspectives on the application of digital twins in WWTPs.This review serves as an essential primer for wastewater engineers navigating the digital paradigm shift.
基金V.R.F.thanks to the Aspen Technology Inc.the possibility to participate in the training course“EHM 101:Introduction to Aspen Hybrid Models for Engineering”,where,during the trial time available for AIMB he carried out the case presented in the current paper.
文摘In this work,Digital Twins based on Neural Networks for the steady state production of styrene were generated.Thus,both the Aspen Technology AI Model Builder(alternative 1)and a homemade MS Excel VBA code connected to Aspen HYSYS and Aspen Plus(alternative 2)were used with this same aim.The raw data used for generating the Digital Twins were obtained from process simulations using Aspen HYSYS and/or Aspen Plus,which were connected through a recycle-like stream via automation for solving the entire simulation flowsheet.Aspen HYSYS was used for solving the pre-heating,reaction,and stabilization sections of the process whereas Aspen Plus ensured the computing of the separation and purification columns.Both alternatives led to an excellent prediction showing the capability of creating Digital Twins from and for process simulation.
文摘Smart energy monitoring and management system lays a foundation for the application and development of smart energy. However, in recent years, the work efficiency of smart energy development enterprises has generally been low, and there is an urgent need to improve the application efficiency, resilience and sustainability of smart energy monitoring and management system. Digital twin technology provides a data-centric solution to improve smart energy monitoring and management system, bringing an opportunity to transform passive infrastructure assets into data-centric systems. This paper expounds on the concept and key technologies of digital twin, and designs a smart energy monitoring and management system based on digital twin technology, which has dual significance for promoting the development of smart energy field and promoting the application of digital twin.
基金supported by the Fundamental Research Funds for The Central Universities(Grant No.2232021A-08)National Natural Science Foundation of China(GrantNo.51905091)Shanghai Sailing Program(Grand No.19YF1401500).
文摘The prognostics health management(PHM)fromthe systematic viewis critical to the healthy continuous operation of processmanufacturing systems(PMS),with different kinds of dynamic interference events.This paper proposes a three leveled digital twinmodel for the systematic PHMof PMSs.The unit-leveled digital twinmodel of each basic device unit of PMSs is constructed based on edge computing,which can provide real-time monitoring and analysis of the device status.The station-leveled digital twin models in the PMSs are designed to optimize and control the process parameters,which are deployed for the manufacturing execution on the fog server.The shop-leveled digital twin maintenancemodel is designed for production planning,which gives production instructions fromthe private industrial cloud server.To cope with the dynamic disturbances of a PMS,a big data-driven framework is proposed to control the three-level digital twin models,which contains indicator prediction,influence evaluation,and decisionmaking.Finally,a case study with a real chemical fiber system is introduced to illustrate the effectiveness of the digital twin model with edge-fog-cloud computing for the systematic PHM of PMSs.The result demonstrates that the three-leveled digital twin model for the systematic PHM in PMSs works well in the system’s respects.
文摘To understand the current application and development of 3D modeling in Digital Twins(DTs),abundant literatures on DTs and 3D modeling are investigated by means of literature review.The transition process from 3D modeling to DTs modeling is analyzed,as well as the current application of DTs modeling in various industries.The application of 3D DTs modeling in theelds of smartmanufacturing,smart ecology,smart transportation,and smart buildings in smart cities is analyzed in detail,and the current limitations are summarized.It is found that the 3D modeling technology in DTs has broad prospects for development and has a huge impact on all walks of life and even human lifestyles.At the same time,the development of DTs modeling relies on the development and support capabilities of mature technologies such as Big Data,Internet of Things,Cloud Computing,Articial Intelligence,and game technology.Therefore,although some results have been achieved,there are still limitations.This work aims to provide a good theoretical support for the further development of 3D DTs modeling.
基金supported in part by the Intergovernmental International Cooperation in Science and Technology Innovation Program under Grants 2019YFE0111600in part by National Natural Science Foundation of China under Grants 62122069,62072490,62201507,and 62071431+2 种基金in part by Science and Technology Development Fund of Macao SAR under Grants 0060/2019/A1 and 0162/2019/A3in part by FDCT-MOST Joint Project under Grant 0066/2019/AMJin part by Research Grant of University of Macao under Grant MYRG2020-00107IOTSC。
文摘In order to improve the comprehensive defense capability of data security in digital twins(DTs),an information security interaction architecture is proposed in this paper to solve the inadequacy of data protection and transmission mechanism at present.Firstly,based on the advanced encryption standard(AES)encryption,we use the keystore to expand the traditional key,and use the digital pointer to avoid the key transmission in a wireless channel.Secondly,the identity authentication technology is adopted to ensure the data integrity,and an automatic retransmission mechanism is added for the endogenous properties of the wireless channel.Finally,the software defined radio(SDR)platform composed of universal software radio peripheral(USRP)and GNU radio is used to simulate the data interaction between the physical entity and the virtual entity.The numerical results show that the DTs architecture can guarantee the encrypted data transmitted completely and decrypted accurately with high efficiency and reliability,thus providing a basis for intelligent and secure information interaction for DTs in the future.
基金the National Natural Science Foundation of China,Nos.62072388 and U21A20515Fuxiaquan Self-Created Area Collaborative Special Project,No.3ZCQXT202001+3 种基金Fujian Science and Technology Plan Industrial Guiding Project,No.2H0047Fujian Natural Science Foundation Project,No.2J016012019 Fujian Science and Technology Plan Innovation Fund Project,No.2C0021and Fujian Sunshine Charity Foundation.
文摘As one of the most important applications of digitalization,intelligence,and service,the digital twin(DT)breaks through the constraints of time,space,cost,and security on physical entities,expands and optimizes the relevant functions of physical entities,and enhances their application value.This phenomenon has been widely studied in academia and industry.In this study,the concept and definition of DT,as utilized by scholars and researchers in various fields of industry,are summarized.The internal association between DT and related technologies is explained.The four stages of DT development history are identified.The fundamentals of the technology,evaluation indexes,and model frameworks are reviewed.Subsequently,a conceptual ternary model of DT based on time,space,and logic is proposed.The technology and application status of typical DT systems are described.Finally,the current technical challenges of DT technology are analyzed,and directions for future development are discussed.
基金the National Natural Science Foundation of China,Nos.51935009 and 51821093National key research and development project of China,No.2022YFB3303303+2 种基金Zhejiang University president special fund financed by Zhejiang province,No.2021XZZX008Zhejiang provincial key research and development project of China,Nos.2023C01060,LZY22E060002 and LZ22E050008The Ng Teng Fong Charitable Foundation in the form of ZJU-SUTD IDEA Grant,No.188170-11102.
文摘This study presents a robustness optimization method for rapid prototyping(RP)of functional artifacts based on visualized computing digital twins(VCDT).A generalized multiobjective robustness optimization model for RP of scheme design prototype was first built,where thermal,structural,and multidisciplinary knowledge could be integrated for visualization.To implement visualized computing,the membership function of fuzzy decision-making was optimized using a genetic algorithm.Transient thermodynamic,structural statics,and flow field analyses were conducted,especially for glass fiber composite materials,which have the characteristics of high strength,corrosion resistance,temperature resistance,dimensional stability,and electrical insulation.An electrothermal experiment was performed by measuring the temperature and changes in temperature during RP.Infrared thermographs were obtained using thermal field measurements to determine the temperature distribution.A numerical analysis of a lightweight ribbed ergonomic artifact is presented to illustrate the VCDT.Moreover,manufacturability was verified based on a thermal-solid coupled finite element analysis.The physical experiment and practice proved that the proposed VCDT provided a robust design paradigm for a layered RP between the steady balance of electrothermal regulation and manufacturing efficacy under hybrid uncertainties.
基金supported by National Key Research and Development Program of China(2020YFB1807900).
文摘Digital twins for wide-areas(DT-WA)can model and predict the physical world with high fidelity by incorporating an artificial intelligence(AI)model.However,the AI model requires an energy-consuming updating process to keep pace with the dynamic environment,where studies are still in infancy.To reduce the updating energy,this paper proposes a distributed edge cooperation and data collection scheme.The AI model is partitioned into multiple sub-models deployed on different edge servers(ESs)co-located with access points across wide-area,to update distributively using local sensor data.To reduce the updating energy,ESs can choose to become either updating helpers or recipients of their neighboring ESs,based on sensor quantities and basic updating convergencies.Helpers would share their updated sub-model parameters with neighboring recipients,so as to reduce the latter updating workload.To minimize system energy under updating convergency and latency constraints,we further propose an algorithm to let ESs distributively optimize their cooperation identities,collect sensor data,and allocate wireless and computing resources.It comprises several constraint-release approaches,where two child optimization problems are solved,and designs a largescale multi-agent deep reinforcement learning algorithm.Simulation shows that the proposed scheme can efficiently reduce updating energy compared with the baselines.
基金National Natural Science Foundation of China(Nos.42171444,42301516)Beijing Natural Science Foundation Project-Municipal Education Commission Joint Fund Project(No.KZ202110016021)Beijing Municipal Education Commission Scientific Research Project-Science and Technology Plan General Project(No.KM202110016005).
文摘Natural disaster risk monitoring is an important task for disaster prevention and reduction.In the case of immovable cultural relics,however,the feedback mechanism,risk factors,monitoring logic,and monitoring indicators of natural disaster risk monitoring are complex.How to achieve intelligent perception and monitoring of natural disaster risk for immovable cultural relics has always been a focus and a challenge for researchers.Based on the analysis of the concepts and issues related to the natural disaster risk of immovable cultural relics,this paper proposes a framework for natural disaster risk monitoring for immovable cultural relics based on the digital twin.This framework focuses on risk monitoring,including the physical entities of natural disaster risk for immovable cultural relics,monitoring indicators,and virtual entity construction.A platform for monitoring the natural disaster risk of immovable cultural relics is proposed.Using the Puzhou Ancient City Site as a test bed,the proposed concept can be used for monitoring the natural disaster risk of immovable cultural relics at different scales.
文摘At present,the interpretation of regional economic development(RED)has changed from a simple evaluation of economic growth to a focus on economic growth and the optimization of economic structure,the improvement of economic relations,and the change of institutional innovation.This article uses the RED trend as the research object and constructs the RED index to conduct the theoretical analysis.Then this paper uses the attention mechanism based on digital twins and the time series network model to verify the actual data.Finally,the regional economy is predicted according to the theoretical model.The specific research work mainly includes the following aspects:1)This paper introduced the development status of research on time series networks and economic forecasting at home and abroad.2)This paper introduces the basic principles and structures of long and short-term memory(LSTM)and convolutional neural network(CNN),constructs an improved CNN-LSTM model combined with the attention mechanism,and then constructs a regional economic prediction index system.3)The best parameters of the model are selected through experiments,and the trained model is used for simulation experiment prediction.The results show that the CNN-LSTM model based on the attentionmechanism proposed in this paper has high accuracy in predicting regional economies.
文摘Digital twins have emerged as a promising technology for maintenance applications,enabling organizations to simulate and monitor physical assets to improve their performance.In Operation and Maintenance(O&M),digital twin facilitates the diagnosis and prognosis of critical assets,forming the basis for smart maintenance planning and reducing downtime.However,there is a lack of standardized approaches for the qualifications of digital twins in maintenance,leading to low trustworthiness and limiting its application.This paper proposes a novel framework for the qualifications of digital twins in maintenance based on five pillars,namely fidelity,smartness,timeliness,integration,and standard compliance.We demonstrate the effectiveness of the framework through two case studies,showing how it can be implemented on digital twins for preventive maintenance and condition-based maintenance.Our proposed framework can help organizations across different industrial domains develop and implement digital twins in maintenance more effectively and efficiently,leading to significant benefits in terms of cost reduction,performance improvement,and sustainability.