With the continuous breakthrough in information technology and its integration into practical applications, industrial digital twins are expected to accelerate their development in the near future. This paper studies ...With the continuous breakthrough in information technology and its integration into practical applications, industrial digital twins are expected to accelerate their development in the near future. This paper studies various control strategies for digital twin systems from the viewpoint of practical applications.To make full use of advantages of digital twins for control systems, an architecture of digital twin control systems, adaptive model tracking scheme, performance prediction scheme, performance retention scheme, and fault tolerant control scheme are proposed. Those schemes are detailed to deal with different issues on model tracking, performance prediction, performance retention, and fault tolerant control of digital twin systems. Also, the stability of digital twin control systems is analysed. The proposed schemes for digital twin control systems are illustrated by examples.展开更多
Threshold decision is an important function of nuclear instrument control system based on physical parameters threshold decision. Because the conventional decision methods lack correlation with time and conditions, by...Threshold decision is an important function of nuclear instrument control system based on physical parameters threshold decision. Because the conventional decision methods lack correlation with time and conditions, by analyzing the existing methods, some optimized methods are adopted. Considering safety, those methods are improved in data processing algorithms, floating threshold with multiple values, association with specific working condition, etc. These measures im- prove the nuclear instrument control system in fault tolerance and fault diagnosis, especially, the shutdown number of nucle- ar power plant decreases.展开更多
The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(M...The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(MLS),which is inherently nonlinear and unstable system.The proposal is to deploy discrete optimal pole-zero approximation method for realization of digital fractional order controller.An approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within given bandwidth is explored.The controller parameters are tuned using dynamic particle swarm optimization(d PSO)technique.Effectiveness of the proposed control scheme is verified by simulation and experimental results.The performance of realized digital FO-PID controller has been compared with that of the integer order PID controllers.It is observed that effort required in fractional order control is smaller as compared with its integer counterpart for obtaining the same system performance.展开更多
An electro-hydraulic control system is designed and implemented for a robotic excavator known as the Lancaster University Computerised and Intelligent Excavator (LUCIE). The excavator is being developed to autonomou...An electro-hydraulic control system is designed and implemented for a robotic excavator known as the Lancaster University Computerised and Intelligent Excavator (LUCIE). The excavator is being developed to autonomously dig trenches without human intervention. Since the behavior of the excavator arm is dominated by the nonlinear dynamics of the hydraulic actuators and by the large and unpredictable external disturbances when digging, it is difficult to provide adequate accurate, quick and smooth movement under traditional control methodology, e.g., PI/PID, which is comparable with that of an average human operator. The data-based dynamic models are developed utilizing the simplified refined instrumental variable (SRIV) identification algorithm to precisely describe the nonlinear dynamical behaviour of the electro-hydraulic actuation system. Based on data-based model and proportional-integral-plus (PIP) methodology, which is a non-minimal state space method of control system design based on the true digital control (TDC) system design philosophy, a novel control system is introduced to drive the excavator arm accurately, quickly and smoothly along the desired path. The performance of simulation and field tests which drive the bucket along straight lines both demonstrate the feasibility and validity of the proposed control scheme.展开更多
As for the application of electronic fuel injection (EFI) system to small gasoline generator set, mechanical speed controller cannot be coupled with EFI system and has the shortcomings of lagged regulation and poor ...As for the application of electronic fuel injection (EFI) system to small gasoline generator set, mechanical speed controller cannot be coupled with EFI system and has the shortcomings of lagged regulation and poor accuracy, a feed-forward control strategy based on load combined with proportional-integral-differential (PID) control strategy was proposed, and a digital speed controller applied to the electrical control system was designed. The detailed control strategy of the controller was intro- duced. The hardware design for the controller and the key circuits of motor driving, current sampling and angular signal captu- ring were given, and software architecture was discussed. Combined with a gasoline generator set mounted with EFI system, the controller parameters were tuned and optimized empirically by hardware in loop and bench test methods. Test results show that the speed deviation of generator set is low and the control system is stable in steady state; In transient state the control system responses quickly, has high stability under mutation loads especially when suddenly apply and remove 100% load, the speed deviation is within 8% of reference speed and the transient time is less than 5 s, satisfying the ISO standard.展开更多
This paper presents a novel digital dual-loop control scheme of the PWM(PUlse width modulate)inverter. Deadbeat control technique are employed to enhance the performance. Half switching period delayed sampling and con...This paper presents a novel digital dual-loop control scheme of the PWM(PUlse width modulate)inverter. Deadbeat control technique are employed to enhance the performance. Half switching period delayed sampling and control timing strategy is used to improve the system dynamic response. Simulation and experimental results presented in the paper verified the validity of the proposed control scheme.展开更多
The complexity of linear, fixed-point arithmetic digital controllers is investigated from a Kolmogorov-Chaitin perspective. Based on the idea of Kolmogorov-Chaitin complexity, practical measures of complexity are deve...The complexity of linear, fixed-point arithmetic digital controllers is investigated from a Kolmogorov-Chaitin perspective. Based on the idea of Kolmogorov-Chaitin complexity, practical measures of complexity are developed for statespace realizations, parallel and cascade realizations, and for a newly proposed generalized implicit state-space realization. The complexity of solutions to a restricted complexity controller benchmark problem is investigated using this measure. The results show that from a Kolmogorov-Chaitin viewpoint, higher-order controllers with a shorter word-length may have lower complexity and better performance, than lower-order controllers with longer word-length.展开更多
The Virtual Resistor based Active Damping(VR-AD) is widely employed in converters connected to the grid via LCL filters in order to mitigate the inherent resonance of the filters. Nevertheless, in digitally controlled...The Virtual Resistor based Active Damping(VR-AD) is widely employed in converters connected to the grid via LCL filters in order to mitigate the inherent resonance of the filters. Nevertheless, in digitally controlled systems, the PWM and the calculating delays modify the system characteristics in terms of frequency and phase, thus destabilizing the system and degrading the VR-AD performances, mainly in low switching frequencies. Moreover, the stability of the system is greatly affected under weak grid operation characterized by large grid impedance variation. This paper solves these problems by proposing a systematic, robust and optimized design procedure of voltage oriented PI control(VOC) with VRAD. The considered design procedure ensures robust control(sufficient stability margins) and high quality of grid current(reduced steady-state error and minimized THD value) despite the negative impact of digital time delay, grid impedance variation and filter parameters change. Simulation and experimental results are presented to show robustness and efficiency of the suggested design procedure.展开更多
--The solar photovoltaic (PV) module output voltage changes according to the variation of light intensity and temperature. This paper presents the implementation of an automatic digital controller of a DC-DC boost c...--The solar photovoltaic (PV) module output voltage changes according to the variation of light intensity and temperature. This paper presents the implementation of an automatic digital controller of a DC-DC boost converter without batteries for a solar cell module by using a peripheral interface controller, which forms a closed loop, to control the ON-OFF period of the switching pulse. The output of DC-DC converter is maintained by automatically increasing or decreasing the pulse width. To produce the pulse width modulation (PWM), the microcontroller is programmed according to the required duty cycle for the power switch. The PWM ON period is increased with the decrease in the PV voltage and vice-versa. The input voltage to the inverter is maintained constantly and is converted into an AC signal by using the metal-oxide-semiconductor field effect transistor (MOSFET) H-bridge operated in the sinusoidal pulse width modulation mode by using a PIC (peripheral interface controller) microcontroller. The generated AC signal can be connected to the AC grid or to the AC load. The simulated results by using Proteus 8 and hardware implemented results verify the effectiveness of the proposed controller.展开更多
A digital control of pulsed gas metal arc welding inverter was proposed. A control system consisting of analogue parts was replaced with a new digital control implemented in a TMS320LF2407A DSP chip. The design and co...A digital control of pulsed gas metal arc welding inverter was proposed. A control system consisting of analogue parts was replaced with a new digital control implemented in a TMS320LF2407A DSP chip. The design and constructional features of the whole digital control were presented. The resources of the DSP chip were efficiently utilized and the circuits are very concise, which can enhance the stability and reliability of welding inverter. Experimental results demonstrate that the developed digital control has the ability to accomplish the excellent pulsed gas metal arc welding process and the merits of the developed digital control are stable welding process, little spatter and perfect weld appearance.展开更多
Digital valve control servo system is studied in this paper. In order to solve the system problems of poor control precision and slow response time,a CMAC-PID( cerebellar model articulation controller-PID) compound co...Digital valve control servo system is studied in this paper. In order to solve the system problems of poor control precision and slow response time,a CMAC-PID( cerebellar model articulation controller-PID) compound control method is proposed. This compound controller consists of two components: one is a traditional PID for the feedback control to guarantee stability of the system; the other is the CMAC control algorithm to form a feed-forward control for achieving high control precision and short response time of the controlled plant. Then the CMAC-PID compound control method is used in the digital valve control servo system to improve its control performance. Through simulation and experiment,the proposed CMAC-PID compound control method is superior to the traditional PID control for enhancing stability and robustness,and thus this compound control can be used as a new control strategy for the digital valve control servo system.展开更多
Aiming at the inherent blemish existi ng currently in airplane cockpit temperature regulating system,a digital temperatu re auto-regulating design scheme of the system is put forward,namely,a digita l proportional-int...Aiming at the inherent blemish existi ng currently in airplane cockpit temperature regulating system,a digital temperatu re auto-regulating design scheme of the system is put forward,namely,a digita l proportional-integral-derivative(PID) controller used for temperature contr ol is designed.And then it is applied in airpl ane cockpit temperature regulating system by adopting the way of cascade control.Experiment results indicate that the design scheme is reasonable and practical.展开更多
The frequency of digitally controlled iodine stabilized He-Ne laser locked to a hyperfine component in ^127I2 was measured using the National Metrology Institute of Japan's reference iodine stabilized He-Ne laser. Th...The frequency of digitally controlled iodine stabilized He-Ne laser locked to a hyperfine component in ^127I2 was measured using the National Metrology Institute of Japan's reference iodine stabilized He-Ne laser. This laser is operated under the conditions of the practical implementation and its frequency with respect to the International Committee for Weights and Measure recommended value is known from international comparisons. Adopting a sampling rate of 120 kHz for the control system of an iodine stabilized He-Ne laser enables frequency deviation of the test laser from the reference laser by + 5 kHz (relative accuracy of 1 ×10^11) thus limited only by the reproducibility of the iodine stabilized He-Ne laser itself.展开更多
A small-signal model of current programmed mode pulse width modulation converter including the equivalent sampling effect is introduced and analyzed. In this model, an addition pole is brought out by the sampling effe...A small-signal model of current programmed mode pulse width modulation converter including the equivalent sampling effect is introduced and analyzed. In this model, an addition pole is brought out by the sampling effect in the current loop gain, and it affects dynamic bandwidth and stability of the inner current loop. By selecting the appropriate stability parameter which determines the additional pole and describes the degree of peaking in closed loop transfer function, a control model of current programmed full bridge arc welding inverter with maximum frequency bandwidth and stability can be obtained. Small and large amplitude pulse current outputs are employed in simulations and experiments and results validate the design method.展开更多
A digital controlled alternating electromagnetic stirring generator is proposed in this paper. The main circuit of the generator makes use of dual inverter structure among which the former inverter uses full bridge ze...A digital controlled alternating electromagnetic stirring generator is proposed in this paper. The main circuit of the generator makes use of dual inverter structure among which the former inverter uses full bridge zero voltage switching topology and the latter inverter uses full bridge inverter circuit. To improve the dynamic response performance, the inverting frequency of the former inverter is as high us 100 kHz. The Cortex-M3 kernel based ARM microcontroller LM3S818 is adopted as the cybernetics core of the digital control system to achieve accurate, stable and flexible control of the generator. All the PWM signals for the former and latter inverters are generated by the LM3S818 directly. The constant current characteristic of the former inverter is obtained through current close-loop feedback control, and can ensure the operation safety when the output current waveform is at zero crossing point. Both simulation and experiment results show that the proposed generator is with such advantages as wide soft-switching range, perfect control accuracy and flexible waveform modulation, and can fulfill the requirements of electromagnetic stirring process.展开更多
It is a fact that the feedback delay actually arises in digital control systems. It is necessary to modify the structure of digital control systems and develop new control algorithms, which is done in this paper. A gr...It is a fact that the feedback delay actually arises in digital control systems. It is necessary to modify the structure of digital control systems and develop new control algorithms, which is done in this paper. A great number of digital computer simulation experiments have shown the obvious advantage of the new algorithms.展开更多
The closed-loop stability issue of finite-precision realizations was investigated for digital control-lers implemented in block-floating-point format. The controller coefficient perturbation was analyzed resultingfrom...The closed-loop stability issue of finite-precision realizations was investigated for digital control-lers implemented in block-floating-point format. The controller coefficient perturbation was analyzed resultingfrom using finite word length (FWL) block-floating-point representation scheme. A block-floating-point FWL closed-loop stability measure was derived which considers both the dynamic range and precision. To facilitate the design of optimal finite-precision controller realizations, a computationally tractable block-floating-point FWL closed-loop stability measure was then introduced and the method of computing the value of this measure for a given controller realization was developed. The optimal controller realization is defined as the solution that maximizes the corresponding measure, and a numerical optimization approach was adopted to solve the resulting optimal realization problem. A numerical example was used to illustrate the design procedure and to compare the optimal controller realization with the initial realization.展开更多
Software has been developed for digital control of WDW series testing machine and the measurement of fracture toughness by modularized design. Development of the software makes use of multi-thread and serial communica...Software has been developed for digital control of WDW series testing machine and the measurement of fracture toughness by modularized design. Development of the software makes use of multi-thread and serial communication techniques, which can accurately control the testing machine and measure the fracture toughness in real-time. Three-point bending specimens were used in the measurement. The software operates stably and reliably, expanding the function of WDW series testing machine.展开更多
This paper models a low-power high-frequency digitally controlled synchronous rectifier (SR) OUCK converter. The converter is a hybrid system with three operation modes. Digital PID controler is used. Key problems s...This paper models a low-power high-frequency digitally controlled synchronous rectifier (SR) OUCK converter. The converter is a hybrid system with three operation modes. Digital PID controler is used. Key problems such as quantization resolution of digital pulse-width modulation (DPWM) and steady-state limit cycles of digital control switching model power supply (SMPS) are discussed, with corresponding solutions presented. Simulation of a digital control synchronous buck is performed with a fixed-point algorithm. The results show that the described approach enables high-speed dynamic performance.展开更多
基金supported in part by Shenzhen Key Laboratory of Control Theory and Intelligent Systems (ZDSYS20220330161800001)the National Natural Science Foundation of China (62173255, 62188101)。
文摘With the continuous breakthrough in information technology and its integration into practical applications, industrial digital twins are expected to accelerate their development in the near future. This paper studies various control strategies for digital twin systems from the viewpoint of practical applications.To make full use of advantages of digital twins for control systems, an architecture of digital twin control systems, adaptive model tracking scheme, performance prediction scheme, performance retention scheme, and fault tolerant control scheme are proposed. Those schemes are detailed to deal with different issues on model tracking, performance prediction, performance retention, and fault tolerant control of digital twin systems. Also, the stability of digital twin control systems is analysed. The proposed schemes for digital twin control systems are illustrated by examples.
基金Research Project of Hunan Province Education Department(No.14C0972)
文摘Threshold decision is an important function of nuclear instrument control system based on physical parameters threshold decision. Because the conventional decision methods lack correlation with time and conditions, by analyzing the existing methods, some optimized methods are adopted. Considering safety, those methods are improved in data processing algorithms, floating threshold with multiple values, association with specific working condition, etc. These measures im- prove the nuclear instrument control system in fault tolerance and fault diagnosis, especially, the shutdown number of nucle- ar power plant decreases.
基金supported by the Board of Research in Nuclear Sciences of the Department of Atomic Energy,India(2012/36/69-BRNS/2012)
文摘The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(MLS),which is inherently nonlinear and unstable system.The proposal is to deploy discrete optimal pole-zero approximation method for realization of digital fractional order controller.An approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within given bandwidth is explored.The controller parameters are tuned using dynamic particle swarm optimization(d PSO)technique.Effectiveness of the proposed control scheme is verified by simulation and experimental results.The performance of realized digital FO-PID controller has been compared with that of the integer order PID controllers.It is observed that effort required in fractional order control is smaller as compared with its integer counterpart for obtaining the same system performance.
基金supported by the Lancaster University (UK)SooChow University, China+2 种基金the UK Engineering and Physical Sciences Research CouncilUniversities’ Natural Science Research Council of Jiangsu Universities, China(Grant No. 08KJB510021)Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China
文摘An electro-hydraulic control system is designed and implemented for a robotic excavator known as the Lancaster University Computerised and Intelligent Excavator (LUCIE). The excavator is being developed to autonomously dig trenches without human intervention. Since the behavior of the excavator arm is dominated by the nonlinear dynamics of the hydraulic actuators and by the large and unpredictable external disturbances when digging, it is difficult to provide adequate accurate, quick and smooth movement under traditional control methodology, e.g., PI/PID, which is comparable with that of an average human operator. The data-based dynamic models are developed utilizing the simplified refined instrumental variable (SRIV) identification algorithm to precisely describe the nonlinear dynamical behaviour of the electro-hydraulic actuation system. Based on data-based model and proportional-integral-plus (PIP) methodology, which is a non-minimal state space method of control system design based on the true digital control (TDC) system design philosophy, a novel control system is introduced to drive the excavator arm accurately, quickly and smoothly along the desired path. The performance of simulation and field tests which drive the bucket along straight lines both demonstrate the feasibility and validity of the proposed control scheme.
文摘As for the application of electronic fuel injection (EFI) system to small gasoline generator set, mechanical speed controller cannot be coupled with EFI system and has the shortcomings of lagged regulation and poor accuracy, a feed-forward control strategy based on load combined with proportional-integral-differential (PID) control strategy was proposed, and a digital speed controller applied to the electrical control system was designed. The detailed control strategy of the controller was intro- duced. The hardware design for the controller and the key circuits of motor driving, current sampling and angular signal captu- ring were given, and software architecture was discussed. Combined with a gasoline generator set mounted with EFI system, the controller parameters were tuned and optimized empirically by hardware in loop and bench test methods. Test results show that the speed deviation of generator set is low and the control system is stable in steady state; In transient state the control system responses quickly, has high stability under mutation loads especially when suddenly apply and remove 100% load, the speed deviation is within 8% of reference speed and the transient time is less than 5 s, satisfying the ISO standard.
文摘This paper presents a novel digital dual-loop control scheme of the PWM(PUlse width modulate)inverter. Deadbeat control technique are employed to enhance the performance. Half switching period delayed sampling and control timing strategy is used to improve the system dynamic response. Simulation and experimental results presented in the paper verified the validity of the proposed control scheme.
文摘The complexity of linear, fixed-point arithmetic digital controllers is investigated from a Kolmogorov-Chaitin perspective. Based on the idea of Kolmogorov-Chaitin complexity, practical measures of complexity are developed for statespace realizations, parallel and cascade realizations, and for a newly proposed generalized implicit state-space realization. The complexity of solutions to a restricted complexity controller benchmark problem is investigated using this measure. The results show that from a Kolmogorov-Chaitin viewpoint, higher-order controllers with a shorter word-length may have lower complexity and better performance, than lower-order controllers with longer word-length.
基金supported by the Tunisian Ministry of High Education and Research under Grant LSE-ENIT-LR11ES15
文摘The Virtual Resistor based Active Damping(VR-AD) is widely employed in converters connected to the grid via LCL filters in order to mitigate the inherent resonance of the filters. Nevertheless, in digitally controlled systems, the PWM and the calculating delays modify the system characteristics in terms of frequency and phase, thus destabilizing the system and degrading the VR-AD performances, mainly in low switching frequencies. Moreover, the stability of the system is greatly affected under weak grid operation characterized by large grid impedance variation. This paper solves these problems by proposing a systematic, robust and optimized design procedure of voltage oriented PI control(VOC) with VRAD. The considered design procedure ensures robust control(sufficient stability margins) and high quality of grid current(reduced steady-state error and minimized THD value) despite the negative impact of digital time delay, grid impedance variation and filter parameters change. Simulation and experimental results are presented to show robustness and efficiency of the suggested design procedure.
文摘--The solar photovoltaic (PV) module output voltage changes according to the variation of light intensity and temperature. This paper presents the implementation of an automatic digital controller of a DC-DC boost converter without batteries for a solar cell module by using a peripheral interface controller, which forms a closed loop, to control the ON-OFF period of the switching pulse. The output of DC-DC converter is maintained by automatically increasing or decreasing the pulse width. To produce the pulse width modulation (PWM), the microcontroller is programmed according to the required duty cycle for the power switch. The PWM ON period is increased with the decrease in the PV voltage and vice-versa. The input voltage to the inverter is maintained constantly and is converted into an AC signal by using the metal-oxide-semiconductor field effect transistor (MOSFET) H-bridge operated in the sinusoidal pulse width modulation mode by using a PIC (peripheral interface controller) microcontroller. The generated AC signal can be connected to the AC grid or to the AC load. The simulated results by using Proteus 8 and hardware implemented results verify the effectiveness of the proposed controller.
基金Supported by National Natural Science Foundation of China ( No50375054)China Postdoctoral Science Foundation ( No20060400745)
文摘A digital control of pulsed gas metal arc welding inverter was proposed. A control system consisting of analogue parts was replaced with a new digital control implemented in a TMS320LF2407A DSP chip. The design and constructional features of the whole digital control were presented. The resources of the DSP chip were efficiently utilized and the circuits are very concise, which can enhance the stability and reliability of welding inverter. Experimental results demonstrate that the developed digital control has the ability to accomplish the excellent pulsed gas metal arc welding process and the merits of the developed digital control are stable welding process, little spatter and perfect weld appearance.
基金Supported by the National Natural Science Foundation of China(No.51505412)the Independent Study Program for Young Teachers in Yanshan University(No.14LGB004)
文摘Digital valve control servo system is studied in this paper. In order to solve the system problems of poor control precision and slow response time,a CMAC-PID( cerebellar model articulation controller-PID) compound control method is proposed. This compound controller consists of two components: one is a traditional PID for the feedback control to guarantee stability of the system; the other is the CMAC control algorithm to form a feed-forward control for achieving high control precision and short response time of the controlled plant. Then the CMAC-PID compound control method is used in the digital valve control servo system to improve its control performance. Through simulation and experiment,the proposed CMAC-PID compound control method is superior to the traditional PID control for enhancing stability and robustness,and thus this compound control can be used as a new control strategy for the digital valve control servo system.
文摘Aiming at the inherent blemish existi ng currently in airplane cockpit temperature regulating system,a digital temperatu re auto-regulating design scheme of the system is put forward,namely,a digita l proportional-integral-derivative(PID) controller used for temperature contr ol is designed.And then it is applied in airpl ane cockpit temperature regulating system by adopting the way of cascade control.Experiment results indicate that the design scheme is reasonable and practical.
文摘The frequency of digitally controlled iodine stabilized He-Ne laser locked to a hyperfine component in ^127I2 was measured using the National Metrology Institute of Japan's reference iodine stabilized He-Ne laser. This laser is operated under the conditions of the practical implementation and its frequency with respect to the International Committee for Weights and Measure recommended value is known from international comparisons. Adopting a sampling rate of 120 kHz for the control system of an iodine stabilized He-Ne laser enables frequency deviation of the test laser from the reference laser by + 5 kHz (relative accuracy of 1 ×10^11) thus limited only by the reproducibility of the iodine stabilized He-Ne laser itself.
文摘A small-signal model of current programmed mode pulse width modulation converter including the equivalent sampling effect is introduced and analyzed. In this model, an addition pole is brought out by the sampling effect in the current loop gain, and it affects dynamic bandwidth and stability of the inner current loop. By selecting the appropriate stability parameter which determines the additional pole and describes the degree of peaking in closed loop transfer function, a control model of current programmed full bridge arc welding inverter with maximum frequency bandwidth and stability can be obtained. Small and large amplitude pulse current outputs are employed in simulations and experiments and results validate the design method.
基金This investigation is supported by National Natural Science Foundation of China (No. 51375173 ) and Guangdong Provincial Science and Technology Project ( No. 2013B010402007, No. 2013B011302006, No. 2014B010104002). (South China University of Technology, Guangzhou, 510640. )
文摘A digital controlled alternating electromagnetic stirring generator is proposed in this paper. The main circuit of the generator makes use of dual inverter structure among which the former inverter uses full bridge zero voltage switching topology and the latter inverter uses full bridge inverter circuit. To improve the dynamic response performance, the inverting frequency of the former inverter is as high us 100 kHz. The Cortex-M3 kernel based ARM microcontroller LM3S818 is adopted as the cybernetics core of the digital control system to achieve accurate, stable and flexible control of the generator. All the PWM signals for the former and latter inverters are generated by the LM3S818 directly. The constant current characteristic of the former inverter is obtained through current close-loop feedback control, and can ensure the operation safety when the output current waveform is at zero crossing point. Both simulation and experiment results show that the proposed generator is with such advantages as wide soft-switching range, perfect control accuracy and flexible waveform modulation, and can fulfill the requirements of electromagnetic stirring process.
文摘It is a fact that the feedback delay actually arises in digital control systems. It is necessary to modify the structure of digital control systems and develop new control algorithms, which is done in this paper. A great number of digital computer simulation experiments have shown the obvious advantage of the new algorithms.
文摘The closed-loop stability issue of finite-precision realizations was investigated for digital control-lers implemented in block-floating-point format. The controller coefficient perturbation was analyzed resultingfrom using finite word length (FWL) block-floating-point representation scheme. A block-floating-point FWL closed-loop stability measure was derived which considers both the dynamic range and precision. To facilitate the design of optimal finite-precision controller realizations, a computationally tractable block-floating-point FWL closed-loop stability measure was then introduced and the method of computing the value of this measure for a given controller realization was developed. The optimal controller realization is defined as the solution that maximizes the corresponding measure, and a numerical optimization approach was adopted to solve the resulting optimal realization problem. A numerical example was used to illustrate the design procedure and to compare the optimal controller realization with the initial realization.
文摘Software has been developed for digital control of WDW series testing machine and the measurement of fracture toughness by modularized design. Development of the software makes use of multi-thread and serial communication techniques, which can accurately control the testing machine and measure the fracture toughness in real-time. Three-point bending specimens were used in the measurement. The software operates stably and reliably, expanding the function of WDW series testing machine.
基金the Power Electronics Science Education Development Program of Delta Environmental & EducationFoundation (Grant No.DERO2007014)the Scientific Service of the Embassy of France in China (Grant No.K06D20)
文摘This paper models a low-power high-frequency digitally controlled synchronous rectifier (SR) OUCK converter. The converter is a hybrid system with three operation modes. Digital PID controler is used. Key problems such as quantization resolution of digital pulse-width modulation (DPWM) and steady-state limit cycles of digital control switching model power supply (SMPS) are discussed, with corresponding solutions presented. Simulation of a digital control synchronous buck is performed with a fixed-point algorithm. The results show that the described approach enables high-speed dynamic performance.