This article intends to bring a new perspective to the discussion of how studio-based education in architectural studies can improve its quality by embedding meta-tools as paradigmatic frameworks as a learning/teachin...This article intends to bring a new perspective to the discussion of how studio-based education in architectural studies can improve its quality by embedding meta-tools as paradigmatic frameworks as a learning/teaching strategy.The newly emerging creative and collaborative digital design tools and systems led to the re-shaping and re-definition of the traditional studio-based teaching/learning processes.The shift does not only comprise of a newly gained ability of using“design toolkits”,but also has substantial cognitive and pedagogical implications.The paper presents,describes and discusses the application of a new pedagogical approach through the application of a novel knowledge framework,that has been used in the teaching of DAD(Digital Architectural Design)in the context of a master’s level course.展开更多
Industry 4.0 as referred to the fourth industrial revolution has endorsed in several national manufacturing initiatives or development plans such as in Germany, the UK, USA and China. A set of important pervasive and ...Industry 4.0 as referred to the fourth industrial revolution has endorsed in several national manufacturing initiatives or development plans such as in Germany, the UK, USA and China. A set of important pervasive and secondary technologies for future manufacturing activities have been identified such as additive manufacturing, sensor technology,展开更多
Design is a high-level and complex thinking activity of human beings,using existing knowledge and technology to solve problems and create new things.With the rise and development of intelligent manufacturing,design ha...Design is a high-level and complex thinking activity of human beings,using existing knowledge and technology to solve problems and create new things.With the rise and development of intelligent manufacturing,design has increasingly reflected its importance in the product life cycle.Firstly,the concept and connotation of complex product design is expounded systematically,and the different types of design are discussed.The four schools of design theory are introduced,including universal design,axiomatic design,TRIZ and general design.Then the research status of complex product design is analyzed,such as innovative design,digital design,modular design,reliability optimization design,etc.Finally,three key scientific issues worthy of research in the future are indicated,and five research trends of“newer,better,smarter,faster,and greener”are summarized,aiming to provide references for the equipment design and manufacturing industry.展开更多
Digital design and manufacturing have been around for several decades from the numerical control of machine tools and automating engineering design in 1960s, through early Computer Aided Design (CAD)/Computer Aided ...Digital design and manufacturing have been around for several decades from the numerical control of machine tools and automating engineering design in 1960s, through early Computer Aided Design (CAD)/Computer Aided Engineering analysis (CAE)/Computer Aided Manufacturing (CAM), to modem digital design and manufacturing [1], and cloud manufacturing [2] converging into product lifecycle management (PLM) [3, 4] and Internet-enabled personalized manufacturing [5].展开更多
Methods used for digital ship design were studied and formed the basis of a proposed frame model suitable for ship construction modeling. Based on 3-D modeling software, a digital design system for hull structures was...Methods used for digital ship design were studied and formed the basis of a proposed frame model suitable for ship construction modeling. Based on 3-D modeling software, a digital design system for hull structures was developed. Basic software systems for modeling, modifying, and assembly simulation were developed. The system has good compatibility, and models created by it can be saved in different 3-D file formats, and 2D engineering drawings can be output directly. The model can be modified dynamically, overcoming the necessity of repeated modifications during hull structural design. Through operations such as model construction, intervention inspection, and collision detection, problems can be identified and modified during the hull structural design stage. Technologies for centralized control of the system, database management, and 3-D digital design are integrated into this digital model in the preliminary design stage of shipbuilding.展开更多
Machine learning(ML) models provide great opportunities to accelerate novel material development, offering a virtual alternative to laborious and resource-intensive empirical methods. In this work, the second of a two...Machine learning(ML) models provide great opportunities to accelerate novel material development, offering a virtual alternative to laborious and resource-intensive empirical methods. In this work, the second of a two-part study, an ML approach is presented that offers accelerated digital design of Mg alloys. A systematic evaluation of four ML regression algorithms was explored to rationalise the complex relationships in Mg-alloy data and to capture the composition-processing-property patterns. Cross-validation and hold-out set validation techniques were utilised for unbiased estimation of model performance. Using atomic and thermodynamic properties of the alloys, feature augmentation was examined to define the most descriptive representation spaces for the alloy data. Additionally, a graphical user interface(GUI) webtool was developed to facilitate the use of the proposed models in predicting the mechanical properties of new Mg alloys. The results demonstrate that random forest regression model and neural network are robust models for predicting the ultimate tensile strength and ductility of Mg alloys, with accuracies of ~80% and 70% respectively. The developed models in this work are a step towards high-throughput screening of novel candidates for target mechanical properties and provide ML-guided alloy design.展开更多
A direct digital design method (DDDM) of worm-gear drive is proposed. It is directly based on the simulation of manufacturing process and completely different from the conventional modeling method. The loaded tooth ...A direct digital design method (DDDM) of worm-gear drive is proposed. It is directly based on the simulation of manufacturing process and completely different from the conventional modeling method. The loaded tooth contact analysis (LTCA) method is analyzed, in which the advanced surface to surface searching technique is included. The influence of misalignment errors and contact deformations on contact zone and transmission error (TE) is discussed. Combined modification approach on worm tooth surface is presented. By means of DDDM and LTCA, it is very conven- ient to verify the effect of worm-gear drive's modification approach. The analysis results show that, the modification in profile direction reduces the sensitivity of worm-gear drive to misalignment errors and the modification in longitudinal direction decreases the TE. Thus the optimization design of worm-gear drive can be achieved prior to the actual manufacturing process.展开更多
Objective:To evaluate the clinical efficacy of the preoperative digita1 design combined with three dimensional(3D)printing models to assist percutaneous kyphoplasty(PKP)treatment for thoracolumbar compression frac tur...Objective:To evaluate the clinical efficacy of the preoperative digita1 design combined with three dimensional(3D)printing models to assist percutaneous kyphoplasty(PKP)treatment for thoracolumbar compression frac tures.Methods:From January 2018 to August 2020,we obtained data of 99 patients diagnosed thoracolumbar compression fractures.These patients were divided into control group(n=50)underwent traditional PKP surgery,and observation group(n=49)underwent preoperative digital design combined with 3D printing model assisted PKP treatment.The clinical efficacy was evaluated with five parameters,including operation time,number of intraoperative radiographs,visual analogue scale(VAS)score,Cobb Angle change,and high compression rate of injured vertebrae.Results:There were statistically significant differences of operation time and number of intraoperative radio graphs between the two groups(P<0.05).For VAS score,Cobb Angle change and vertebral height compression rate,all of these three parameters were significantly improved when the patients accepted surgery teatment in two groups(P<0.05).However,there were no significant differences between control group and observation group for these three parameters either before or after surgery(P>0.05).Conclusions:Through the design of preoperative surgical guide plate and the application of 3D printing model to guide the operation,the precise design of preoperative surgical puncture site and puncture Angle of the injured vertebra was realized,the number of intraoperative radiographs was reduced,the operation time was shortened and the operation efficiency was improved.展开更多
This paper presents the first application of the bees algorithm to the optimisation of parameters of a two-dimensional (2D) recursive digital filter. The algorithm employs a search technique inspired by the foraging...This paper presents the first application of the bees algorithm to the optimisation of parameters of a two-dimensional (2D) recursive digital filter. The algorithm employs a search technique inspired by the foraging behaviour of honey bees. The results obtained show clear improvement compared to those produced by the widely adopted genetic algorithm (GA).展开更多
How to design and organize the implementation of teaching is an important consideration for the quality of the course.This paper takes the“Digital Logic Design”course as an example,and carries out teaching design an...How to design and organize the implementation of teaching is an important consideration for the quality of the course.This paper takes the“Digital Logic Design”course as an example,and carries out teaching design and practice based on the blended teaching mode.By adopting various forms such as MOOC+SPOC+theme seminars,beneficial explorations have been made in improving students’autonomous learning ability,strengthening engineering literacy,and cultivating innovation ability.展开更多
Industry 4.0 as referred to a fourth industrial revolution has endorsed in several national manufacturing development plans such as in Germany, the UK, and China. A set of important pervasive and secondary technologie...Industry 4.0 as referred to a fourth industrial revolution has endorsed in several national manufacturing development plans such as in Germany, the UK, and China. A set of important pervasive and secondary technologies for future manufacturing activities have been identified such as additive manufacturing, sensor technology, big data analytics, Internet of things, robotics, cloud computing, and nanotechnology.展开更多
Digital design and manufacturing have been under pinned by digital modeling, simulation, and automation controls for decades. Under the new market requirement of mass customized products and services, the advancements...Digital design and manufacturing have been under pinned by digital modeling, simulation, and automation controls for decades. Under the new market requirement of mass customized products and services, the advancements in artificial intelligence (AI), smart technology, virtual reality (VR), big data, digital twin, robotics and human-centered design are becoming driving forces for the development of future digital design and manufacturing. This special issue focuses on the future digital design and manufacturing especially under the Industry 4.0 framework and beyond. This editorial introduces the papers in this special issue, which linked to the International Workshop on Digital Design and Manufacturing Technologies - Embracing Industry 4.0 and Beyond at Northumbria University in Newcastle, UK, held on 12-13 April 2016. In the Part I of the issue [1], there are 13 papers published in 2016, Vol- ume 29, No 6 of the Chinese Journal of Mechanical Engineering (this journal).展开更多
A digital model is presented for the purpose of design, manufacture and measurement of hypoid gear, based on the non-uniform rational B-spline surface (NURBS) method. The digital model and the function-oriented acti...A digital model is presented for the purpose of design, manufacture and measurement of hypoid gear, based on the non-uniform rational B-spline surface (NURBS) method. The digital model and the function-oriented active design technique are combined to form a new design method for hypoid gears. The method is well adaptable to CNC bevel gear cutting machines and CNC-controlled gear inspection machines, and can be used to create the initial machine tool cutting location data or program measurement path. The presented example verifies the method is correct.展开更多
Concepts of precision engineering design process for optimal design where engineering sciences contribute in the successful good design are elaborated in this paper.Scientific theory and practicality are discussed in ...Concepts of precision engineering design process for optimal design where engineering sciences contribute in the successful good design are elaborated in this paper.Scientific theory and practicality are discussed in this paper.Factors necessary for a complete product or systems design are detailed and application of mathematical design optimization in producing a good design are shown.Many applicable engineering design examples are itemized to show relevancy of the optimal design theory to engineering design.Future trends of optimal design with respect to the 4th industrial revolution of digitization are presented.Paper sets to elaborate that most of the engineering and scientific design problems can be optimized to a good design based on many new/advanced optimization techniques.展开更多
At present, the reform of colleges and universities in our country is in full swing. In the course of teaching design of art in colleges and universities, it is necessary to change the teaching mode in time to adapt t...At present, the reform of colleges and universities in our country is in full swing. In the course of teaching design of art in colleges and universities, it is necessary to change the teaching mode in time to adapt to the new teaching development environment. In the era of digital development, we need to give full attention to the optimization of art design teaching in colleges and universities, and run new teaching techniques. This paper mainly analyzes the advantages and importance of the digital art design in colleges and universities, and then discusses the application of digital technology in the art design teaching and the concrete teaching optimiTatiun strategy in detail. Hoping to through this theoretical research, contribute to the improvement of the quality of art design teaching.展开更多
The advanced fin-shaped field-effect transistor(FinFET)technology offers higher integration density and stronger channel control capabilities,however,more complex process effects are also introduced which have signifi...The advanced fin-shaped field-effect transistor(FinFET)technology offers higher integration density and stronger channel control capabilities,however,more complex process effects are also introduced which have significant influence on device performance.To address these issues,we complete a design-technology co-optimization(DTCO)focused on FinFET,including both process-induced effect during gate formation and corresponding digital unit optimization design.The 14 nm Fin-FET complementary metal oxide semiconductor(CMOS)technology is used to illustrate the sensitivity of transistor perfor-mance to process-induced effect,specifically the poly pitch effect(PPE)and cut poly effect(CPE).Predictive technology com-puter aided design(TCAD)simulations have been carried out to evaluate the transistor performance in advance.Based on the results,optimizations in digital unit design is proposed.Fall delay of the digital unit inverter is decreased by 0.7%,and the rise delay is decreased by 2.1%.For multiple selector(MUX2NV),the delay decreases by 4.64%for rise and 3.56%for drop,respec-tively.展开更多
Most of the previous studies on the vibration ride comfort of the human-vehicle system were focused only on one or two aspects of the investigation. A hybrid approach which integrates all kinds of investigation method...Most of the previous studies on the vibration ride comfort of the human-vehicle system were focused only on one or two aspects of the investigation. A hybrid approach which integrates all kinds of investigation methods in real environment and virtual environment is described. The real experimental environment includes the WBV(whole body vibration) test, questionnaires for human subjective sensation and motion capture. The virtual experimental environment includes the theoretical calculation on simplified 5-DOF human body vibration model, the vibration simulation and analysis within ADAMS/VibrationTM module, and the digital human biomechanics and occupational health analysis in Jack software. While the real experimental environment provides realistic and accurate test results, it also serves as core and validation for the virtual experimental environment. The virtual experimental environment takes full advantages of current available vibration simulation and digital human modelling software, and makes it possible to evaluate the sitting posture comfort in a human-vehicle system with various human anthropometric parameters. How this digital evaluation system for car seat comfort design is fitted in the Industry 4.0 framework is also proposed.展开更多
基金the students of the M.Sc.Digital Architectural Design course at Salford University between 2008-2012.
文摘This article intends to bring a new perspective to the discussion of how studio-based education in architectural studies can improve its quality by embedding meta-tools as paradigmatic frameworks as a learning/teaching strategy.The newly emerging creative and collaborative digital design tools and systems led to the re-shaping and re-definition of the traditional studio-based teaching/learning processes.The shift does not only comprise of a newly gained ability of using“design toolkits”,but also has substantial cognitive and pedagogical implications.The paper presents,describes and discusses the application of a new pedagogical approach through the application of a novel knowledge framework,that has been used in the teaching of DAD(Digital Architectural Design)in the context of a master’s level course.
文摘Industry 4.0 as referred to the fourth industrial revolution has endorsed in several national manufacturing initiatives or development plans such as in Germany, the UK, USA and China. A set of important pervasive and secondary technologies for future manufacturing activities have been identified such as additive manufacturing, sensor technology,
基金National Natural Science Foundation of China(Grant Nos.51935009,51875517)Zhejiang Provincial Natural Science Foundation of China(Grant No.LY20E050015).
文摘Design is a high-level and complex thinking activity of human beings,using existing knowledge and technology to solve problems and create new things.With the rise and development of intelligent manufacturing,design has increasingly reflected its importance in the product life cycle.Firstly,the concept and connotation of complex product design is expounded systematically,and the different types of design are discussed.The four schools of design theory are introduced,including universal design,axiomatic design,TRIZ and general design.Then the research status of complex product design is analyzed,such as innovative design,digital design,modular design,reliability optimization design,etc.Finally,three key scientific issues worthy of research in the future are indicated,and five research trends of“newer,better,smarter,faster,and greener”are summarized,aiming to provide references for the equipment design and manufacturing industry.
文摘Digital design and manufacturing have been around for several decades from the numerical control of machine tools and automating engineering design in 1960s, through early Computer Aided Design (CAD)/Computer Aided Engineering analysis (CAE)/Computer Aided Manufacturing (CAM), to modem digital design and manufacturing [1], and cloud manufacturing [2] converging into product lifecycle management (PLM) [3, 4] and Internet-enabled personalized manufacturing [5].
文摘Methods used for digital ship design were studied and formed the basis of a proposed frame model suitable for ship construction modeling. Based on 3-D modeling software, a digital design system for hull structures was developed. Basic software systems for modeling, modifying, and assembly simulation were developed. The system has good compatibility, and models created by it can be saved in different 3-D file formats, and 2D engineering drawings can be output directly. The model can be modified dynamically, overcoming the necessity of repeated modifications during hull structural design. Through operations such as model construction, intervention inspection, and collision detection, problems can be identified and modified during the hull structural design stage. Technologies for centralized control of the system, database management, and 3-D digital design are integrated into this digital model in the preliminary design stage of shipbuilding.
基金the support of the Monash-IITB Academy Scholarshipthe Australian Research Council for funding the present research (DP190103592)。
文摘Machine learning(ML) models provide great opportunities to accelerate novel material development, offering a virtual alternative to laborious and resource-intensive empirical methods. In this work, the second of a two-part study, an ML approach is presented that offers accelerated digital design of Mg alloys. A systematic evaluation of four ML regression algorithms was explored to rationalise the complex relationships in Mg-alloy data and to capture the composition-processing-property patterns. Cross-validation and hold-out set validation techniques were utilised for unbiased estimation of model performance. Using atomic and thermodynamic properties of the alloys, feature augmentation was examined to define the most descriptive representation spaces for the alloy data. Additionally, a graphical user interface(GUI) webtool was developed to facilitate the use of the proposed models in predicting the mechanical properties of new Mg alloys. The results demonstrate that random forest regression model and neural network are robust models for predicting the ultimate tensile strength and ductility of Mg alloys, with accuracies of ~80% and 70% respectively. The developed models in this work are a step towards high-throughput screening of novel candidates for target mechanical properties and provide ML-guided alloy design.
基金This project is supported by National Natural Science Foundation of China (No.E50575234).
文摘A direct digital design method (DDDM) of worm-gear drive is proposed. It is directly based on the simulation of manufacturing process and completely different from the conventional modeling method. The loaded tooth contact analysis (LTCA) method is analyzed, in which the advanced surface to surface searching technique is included. The influence of misalignment errors and contact deformations on contact zone and transmission error (TE) is discussed. Combined modification approach on worm tooth surface is presented. By means of DDDM and LTCA, it is very conven- ient to verify the effect of worm-gear drive's modification approach. The analysis results show that, the modification in profile direction reduces the sensitivity of worm-gear drive to misalignment errors and the modification in longitudinal direction decreases the TE. Thus the optimization design of worm-gear drive can be achieved prior to the actual manufacturing process.
基金supported in part by the General Program of Natural Science Foundation of Hubei Province,China(Grant No.2020CFB548)a Project in 2021 of Science and Technology Support Plan of Guizhou Province,China(Grant No.202158413293820389).
文摘Objective:To evaluate the clinical efficacy of the preoperative digita1 design combined with three dimensional(3D)printing models to assist percutaneous kyphoplasty(PKP)treatment for thoracolumbar compression frac tures.Methods:From January 2018 to August 2020,we obtained data of 99 patients diagnosed thoracolumbar compression fractures.These patients were divided into control group(n=50)underwent traditional PKP surgery,and observation group(n=49)underwent preoperative digital design combined with 3D printing model assisted PKP treatment.The clinical efficacy was evaluated with five parameters,including operation time,number of intraoperative radiographs,visual analogue scale(VAS)score,Cobb Angle change,and high compression rate of injured vertebrae.Results:There were statistically significant differences of operation time and number of intraoperative radio graphs between the two groups(P<0.05).For VAS score,Cobb Angle change and vertebral height compression rate,all of these three parameters were significantly improved when the patients accepted surgery teatment in two groups(P<0.05).However,there were no significant differences between control group and observation group for these three parameters either before or after surgery(P>0.05).Conclusions:Through the design of preoperative surgical guide plate and the application of 3D printing model to guide the operation,the precise design of preoperative surgical puncture site and puncture Angle of the injured vertebra was realized,the number of intraoperative radiographs was reduced,the operation time was shortened and the operation efficiency was improved.
基金supported by the ERDF (Objective One) project"Supporting Innovative Product Engineering and Responsive Manufacturing" (SUPERMAN)the EC-funded Network of Excellence"Innovative Production Machines and Systems" (I*PROMS)
文摘This paper presents the first application of the bees algorithm to the optimisation of parameters of a two-dimensional (2D) recursive digital filter. The algorithm employs a search technique inspired by the foraging behaviour of honey bees. The results obtained show clear improvement compared to those produced by the widely adopted genetic algorithm (GA).
文摘How to design and organize the implementation of teaching is an important consideration for the quality of the course.This paper takes the“Digital Logic Design”course as an example,and carries out teaching design and practice based on the blended teaching mode.By adopting various forms such as MOOC+SPOC+theme seminars,beneficial explorations have been made in improving students’autonomous learning ability,strengthening engineering literacy,and cultivating innovation ability.
文摘Industry 4.0 as referred to a fourth industrial revolution has endorsed in several national manufacturing development plans such as in Germany, the UK, and China. A set of important pervasive and secondary technologies for future manufacturing activities have been identified such as additive manufacturing, sensor technology, big data analytics, Internet of things, robotics, cloud computing, and nanotechnology.
文摘Digital design and manufacturing have been under pinned by digital modeling, simulation, and automation controls for decades. Under the new market requirement of mass customized products and services, the advancements in artificial intelligence (AI), smart technology, virtual reality (VR), big data, digital twin, robotics and human-centered design are becoming driving forces for the development of future digital design and manufacturing. This special issue focuses on the future digital design and manufacturing especially under the Industry 4.0 framework and beyond. This editorial introduces the papers in this special issue, which linked to the International Workshop on Digital Design and Manufacturing Technologies - Embracing Industry 4.0 and Beyond at Northumbria University in Newcastle, UK, held on 12-13 April 2016. In the Part I of the issue [1], there are 13 papers published in 2016, Vol- ume 29, No 6 of the Chinese Journal of Mechanical Engineering (this journal).
基金This project is supported by National Natural Science Foundation of China (NO.59775009)
文摘A digital model is presented for the purpose of design, manufacture and measurement of hypoid gear, based on the non-uniform rational B-spline surface (NURBS) method. The digital model and the function-oriented active design technique are combined to form a new design method for hypoid gears. The method is well adaptable to CNC bevel gear cutting machines and CNC-controlled gear inspection machines, and can be used to create the initial machine tool cutting location data or program measurement path. The presented example verifies the method is correct.
文摘Concepts of precision engineering design process for optimal design where engineering sciences contribute in the successful good design are elaborated in this paper.Scientific theory and practicality are discussed in this paper.Factors necessary for a complete product or systems design are detailed and application of mathematical design optimization in producing a good design are shown.Many applicable engineering design examples are itemized to show relevancy of the optimal design theory to engineering design.Future trends of optimal design with respect to the 4th industrial revolution of digitization are presented.Paper sets to elaborate that most of the engineering and scientific design problems can be optimized to a good design based on many new/advanced optimization techniques.
文摘At present, the reform of colleges and universities in our country is in full swing. In the course of teaching design of art in colleges and universities, it is necessary to change the teaching mode in time to adapt to the new teaching development environment. In the era of digital development, we need to give full attention to the optimization of art design teaching in colleges and universities, and run new teaching techniques. This paper mainly analyzes the advantages and importance of the digital art design in colleges and universities, and then discusses the application of digital technology in the art design teaching and the concrete teaching optimiTatiun strategy in detail. Hoping to through this theoretical research, contribute to the improvement of the quality of art design teaching.
基金supported by the National Natural Science Foundation of China (623B2028).
文摘The advanced fin-shaped field-effect transistor(FinFET)technology offers higher integration density and stronger channel control capabilities,however,more complex process effects are also introduced which have significant influence on device performance.To address these issues,we complete a design-technology co-optimization(DTCO)focused on FinFET,including both process-induced effect during gate formation and corresponding digital unit optimization design.The 14 nm Fin-FET complementary metal oxide semiconductor(CMOS)technology is used to illustrate the sensitivity of transistor perfor-mance to process-induced effect,specifically the poly pitch effect(PPE)and cut poly effect(CPE).Predictive technology com-puter aided design(TCAD)simulations have been carried out to evaluate the transistor performance in advance.Based on the results,optimizations in digital unit design is proposed.Fall delay of the digital unit inverter is decreased by 0.7%,and the rise delay is decreased by 2.1%.For multiple selector(MUX2NV),the delay decreases by 4.64%for rise and 3.56%for drop,respec-tively.
基金Supported by National Natural Science Foundation of China(Grant No.51465056)Xinjiang Provincial Natural Science Foundation of China(Grant No.2015211C265)Xinjiang University Ph D Start-up Funds,China
文摘Most of the previous studies on the vibration ride comfort of the human-vehicle system were focused only on one or two aspects of the investigation. A hybrid approach which integrates all kinds of investigation methods in real environment and virtual environment is described. The real experimental environment includes the WBV(whole body vibration) test, questionnaires for human subjective sensation and motion capture. The virtual experimental environment includes the theoretical calculation on simplified 5-DOF human body vibration model, the vibration simulation and analysis within ADAMS/VibrationTM module, and the digital human biomechanics and occupational health analysis in Jack software. While the real experimental environment provides realistic and accurate test results, it also serves as core and validation for the virtual experimental environment. The virtual experimental environment takes full advantages of current available vibration simulation and digital human modelling software, and makes it possible to evaluate the sitting posture comfort in a human-vehicle system with various human anthropometric parameters. How this digital evaluation system for car seat comfort design is fitted in the Industry 4.0 framework is also proposed.