Pandemics like COVID-19 have created a spreading and ever-higher healthy threat to the humans in the manufacturing system which incurs severe disruptions and complex issues to industrial networks.The intelligent manuf...Pandemics like COVID-19 have created a spreading and ever-higher healthy threat to the humans in the manufacturing system which incurs severe disruptions and complex issues to industrial networks.The intelligent manufacturing(IM)systems are promising to create a safe working environment by using the automated manufacturing assets which are monitored by the networked sensors and controlled by the intelligent decision-making algorithms.The relief of the production disruption by IM technologies facilitates the reconnection of the good and service flows in the network,which mitigates the severity of industrial chain disruption.In this study,we create a novel intelligent manufacturing framework for the production recovery under the pandemic and build an assessment model to evaluate the impacts of the IM technologies on industrial networks.Considering the constraints of the IM resources,we formulate an optimization model to schedule the allocation of IM resources according to the mutual market demands and the severity of the pandemic.展开更多
Artificial intelligent aided design and manufacturing have been recognized as one kind of robust data-driven and data-intensive technologies in the integrated computational material engi-neering(ICME)era.Motivated by ...Artificial intelligent aided design and manufacturing have been recognized as one kind of robust data-driven and data-intensive technologies in the integrated computational material engi-neering(ICME)era.Motivated by the dramatical developments of the services of China Railway High-speed series for more than a decade,it is essential to reveal the foundations of lifecycle man-agement of those trains under environmental conditions.Here,the smart design and manufacturing of welded Q350 steel frames of CR200J series are introduced,presenting the capability and opportu-nity of ICME in weight reduction and lifecycle management at a cost-effective approach.In order to address the required fatigue life time enduring more than 9×10^(6)km,the response of optimized frames to the static and the dynamic loads are comprehensively investigated.It is highlighted that the maximum residual stress of the optimized welded frame is reduced to 69 MPa from 477 MPa of previous existing one.Based on the measured stress and acceleration from the railways,the fatigue life of modified frame under various loading modes could fulfil the requirements of the lifecycle man-agement.Moreover,our recent developed intelligent quality control strategy of welding process mediated by machine learning is also introduced,envisioning its application in the intelligent weld-ing.展开更多
Applications of process systems engineering(PSE)in plants and enterprises are boosting industrial reform from automation to digitization and intelligence.For ethylene thermal cracking,knowledge expression,numerical mo...Applications of process systems engineering(PSE)in plants and enterprises are boosting industrial reform from automation to digitization and intelligence.For ethylene thermal cracking,knowledge expression,numerical modeling and intelligent optimization are key steps for intelligent manufacturing.This paper provides an overview of progress and contributions to the PSE-aided production of thermal cracking;introduces the frameworks,methods and algorithms that have been proposed over the past10 years and discusses the advantages,limitations and applications in industrial practice.An entire set of molecular-level modeling approaches from feedstocks to products,including feedstock molecular reconstruction,reaction-network auto-generation and cracking unit simulation are described.Multilevel control and optimization methods are exhibited,including at the operational,cycle,plant and enterprise level.Relevant software packages are introduced.Finally,an outlook in terms of future directions is presented.展开更多
As the take-off of China’s macro economy,as well as the rapid development of infrastructure construction,real estate industry,and highway logistics transportation industry,the demand for heavy vehicles is increasing ...As the take-off of China’s macro economy,as well as the rapid development of infrastructure construction,real estate industry,and highway logistics transportation industry,the demand for heavy vehicles is increasing rapidly,the competition is becoming increasingly fierce,and the digital transformation of the production line is imminent.As one of themost important components of heavy vehicles,the transmission front andmiddle case assembly lines have a high degree of automation,which can be used as a pilot for the digital transformation of production.To ensure the visualization of digital twins(DT),consistent control logic,and real-time data interaction,this paper proposes an experimental digital twin modeling method for the transmission front and middle case assembly line.Firstly,theDT-based systemarchitecture is designed,and theDT model is created by constructing the visualization model,logic model,and data model of the assembly line.Then,a simulation experiment is carried out in a virtual space to analyze the existing problems in the current assembly line.Eventually,some improvement strategies are proposed and the effectiveness is verified by a new simulation experiment.展开更多
Intelligent technologies are leading to the next wave of industrial revolution in manufacturing.In developed economies,firms are embracing these advanced technologies following a sequential upgrading strategy-from dig...Intelligent technologies are leading to the next wave of industrial revolution in manufacturing.In developed economies,firms are embracing these advanced technologies following a sequential upgrading strategy-from digital manufacturing to smart manufacturing(digital-networked),and then to newgeneration intelligent manufacturing paradigms.However,Chinese firms face a different scenario.On the one hand,they have diverse technological bases that vary from low-end electrified machinery to leading-edge digital-network technologies;thus,they may not follow an identical upgrading pathway.On the other hand,Chinese firms aim to rapidly catch up and transition from technology followers to probable frontrunners;thus,the turbulences in the transitioning phase may trigger a precious opportunity for leapfrogging,if Chinese manufacturers can swiftly acquire domain expertise through the adoption of intelligent manufacturing technologies.This study addresses the following question by conducting multiple case studies:Can Chinese firms upgrade intelligent manufacturing through different pathways than the sequential one followed in developed economies?The data sources include semistructured interviews and archival data.This study finds that Chinese manufacturing firms have a variety of pathways to transition across the three technological paradigms of intelligent manufacturing in nonconsecutive ways.This finding implies that Chinese firms may strategize their own upgrading pathways toward intelligent manufacturing according to their capabilities and industrial specifics;furthermore,this finding can be extended to other catching-up economies.This paper provides a strategic roadmap as an explanatory guide to manufacturing firms,policymakers,and investors.展开更多
After reviewing the development of industrial manufacturing, a novel concept called social manufacturing(SM) and service are proposed as an innovative manufacturing solution for the coming personalized customization e...After reviewing the development of industrial manufacturing, a novel concept called social manufacturing(SM) and service are proposed as an innovative manufacturing solution for the coming personalized customization era. SM can realize a customer's requirements of "from mind to products", and fulfill tangible and intangible needs of a prosumer, i.e., producer and consumer at the same time. It represents a manufacturing trend,and is expected to become popular in more and more industries.First, a comparison between mass customization and SM is given out, and the basis and motivation from social network to SM is analyzed. Then, its basic theories and supporting technologies,like Internet of Things(Io T), social networks, cloud computing,3 D printing, and intelligent systems, are introduced and analyzed,and an SM platform prototype is developed. Finally, three transformation modes towards SM and 3 D printing are suggested for different user cases.展开更多
Relying on the construction management of Hangzhouxi Railway Station,this paper analyses the comprehensive application of intelligent construction technology and the establishment of the common data environment(CDE)by...Relying on the construction management of Hangzhouxi Railway Station,this paper analyses the comprehensive application of intelligent construction technology and the establishment of the common data environment(CDE)by using BIM technology.This paper gives the idea that such issues are deeply explored as large-span curved surface structure improvement,steel structure construction monitoring,special-shaped ticket check canopy construction,prefabricated machine room construction,grid construction management,etc.so as to form an intelligent construction management system based on BIM technology.The system has achieved good application results in economic benefits,social benefits and environmental benefits,which can promote the gradual transformation to a more digitalized,networked and intelligent Hangzhouxi Railway Station,and lay a solid foundation for achieving the construction goals of controllable construction period,excellent quality,green and low carbon,etc.展开更多
Manufacturing enterprises play an important role in improving the economic environment of a country.Today,the capability to produce high quality products with shorter delivery time and the ability to produce according...Manufacturing enterprises play an important role in improving the economic environment of a country.Today,the capability to produce high quality products with shorter delivery time and the ability to produce according to the diverse customer requirements has become the characteristics of successful manufacturing industries. Application of intelligent manufacturing systems and Computer integrated manufacturing (CIM) are the most effective methods for overcoming the issues faced by present day manufactures while retaining the employment level and revenue of a country in today’s highly competitive global market. With the developments taking place in CIM and its related technologies,the application of CIM in manufacturing enterprises has become a reality from the dream. This paper highlights the historical developments towards automation and the need for CIM systems. Furthermore,it analyses some new terms such as agile manufacturing,digital manufacturing,agent-based manufacturing and others,which have been emerging recently,and argues all these new technologies are the subsystems of CIM. In addition,this paper provides a new direction in CIM to fulfil the emerging challenges in today’s global market and to satisfy the emerging need of virtual enterprises in the form of Virtual CIM.展开更多
Smart manufacturing refers to optimization techniques that are implemented in production operations by utilizing advanced analytics approaches. With the widespread increase in deploying industrial internet of things(I...Smart manufacturing refers to optimization techniques that are implemented in production operations by utilizing advanced analytics approaches. With the widespread increase in deploying industrial internet of things(IIOT) sensors in manufacturing processes, there is a progressive need for optimal and effective approaches to data management.Embracing machine learning and artificial intelligence to take advantage of manufacturing data can lead to efficient and intelligent automation. In this paper, we conduct a comprehensive analysis based on evolutionary computing and neural network algorithms toward making semiconductor manufacturing smart.We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes and to address various challenges. We elaborate on the utilization of a genetic algorithm and neural network to propose an intelligent feature selection algorithm. Our objective is to provide an advanced solution for controlling manufacturing processes and to gain perspective on various dimensions that enable manufacturers to access effective predictive technologies.展开更多
Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With D...Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With DT channel modeling,the generated channel data can be closer to realistic channel measurements without requiring a prior channel model,and amount of channel data can be significantly increased.Artificial intelligence(AI)based modeling approach shows outstanding performance to solve such problems.In this work,a channel modeling method based on generative adversarial networks is proposed for DT channel,which can generate identical statistical distribution with measured channel.Model validation is conducted by comparing DT channel characteristics with measurements,and results show that DT channel leads to fairly good agreement with measured channel.Finally,a link-layer simulation is implemented based on DT channel.It is found that the proposed DT channel model can be well used to conduct link-layer simulation and its performance is comparable to using measurement data.The observations and results can facilitate the development of DT channel modeling and provide new thoughts for DT channel applications,as well as improving the performance and reliability of intelligent communication networking.展开更多
该文将数字孪生技术应用于模块化生产系统(modular production system,MPS)的智能化改造中,构建了基于数字孪生的MPS实践教学平台。依托监控系统和虚实交互等关键技术,增加了MPS数字孪生体的虚拟建模、虚实联调和PLC程序软件在环/硬件...该文将数字孪生技术应用于模块化生产系统(modular production system,MPS)的智能化改造中,构建了基于数字孪生的MPS实践教学平台。依托监控系统和虚实交互等关键技术,增加了MPS数字孪生体的虚拟建模、虚实联调和PLC程序软件在环/硬件在环调试等实训环节;验证了MPS实践教学平台设计方案的可行性;制定了新的教学框架及详细的实训内容和考核方案。最后,将实训内容与大学生竞赛相结合,提高了学生对智能制造、工业生产的认知能力和实践动手能力。展开更多
基金the International Postdoctoral Exchange Fellowship Program(20180025).
文摘Pandemics like COVID-19 have created a spreading and ever-higher healthy threat to the humans in the manufacturing system which incurs severe disruptions and complex issues to industrial networks.The intelligent manufacturing(IM)systems are promising to create a safe working environment by using the automated manufacturing assets which are monitored by the networked sensors and controlled by the intelligent decision-making algorithms.The relief of the production disruption by IM technologies facilitates the reconnection of the good and service flows in the network,which mitigates the severity of industrial chain disruption.In this study,we create a novel intelligent manufacturing framework for the production recovery under the pandemic and build an assessment model to evaluate the impacts of the IM technologies on industrial networks.Considering the constraints of the IM resources,we formulate an optimization model to schedule the allocation of IM resources according to the mutual market demands and the severity of the pandemic.
基金supported by the National Basic Scientific Research Project of China (No.JCKY2020607B003)CRRC (No.202CDA001)
文摘Artificial intelligent aided design and manufacturing have been recognized as one kind of robust data-driven and data-intensive technologies in the integrated computational material engi-neering(ICME)era.Motivated by the dramatical developments of the services of China Railway High-speed series for more than a decade,it is essential to reveal the foundations of lifecycle man-agement of those trains under environmental conditions.Here,the smart design and manufacturing of welded Q350 steel frames of CR200J series are introduced,presenting the capability and opportu-nity of ICME in weight reduction and lifecycle management at a cost-effective approach.In order to address the required fatigue life time enduring more than 9×10^(6)km,the response of optimized frames to the static and the dynamic loads are comprehensively investigated.It is highlighted that the maximum residual stress of the optimized welded frame is reduced to 69 MPa from 477 MPa of previous existing one.Based on the measured stress and acceleration from the railways,the fatigue life of modified frame under various loading modes could fulfil the requirements of the lifecycle man-agement.Moreover,our recent developed intelligent quality control strategy of welding process mediated by machine learning is also introduced,envisioning its application in the intelligent weld-ing.
基金The authors gratefully acknowledge the National Natural Science Foundation of China for its financial support(U1462206).
文摘Applications of process systems engineering(PSE)in plants and enterprises are boosting industrial reform from automation to digitization and intelligence.For ethylene thermal cracking,knowledge expression,numerical modeling and intelligent optimization are key steps for intelligent manufacturing.This paper provides an overview of progress and contributions to the PSE-aided production of thermal cracking;introduces the frameworks,methods and algorithms that have been proposed over the past10 years and discusses the advantages,limitations and applications in industrial practice.An entire set of molecular-level modeling approaches from feedstocks to products,including feedstock molecular reconstruction,reaction-network auto-generation and cracking unit simulation are described.Multilevel control and optimization methods are exhibited,including at the operational,cycle,plant and enterprise level.Relevant software packages are introduced.Finally,an outlook in terms of future directions is presented.
基金supported by China National Heavy Duty Truck Group Co.,Ltd.(Grant No.YF03221048P)the Shanghai Municipal Bureau of Market Supervision and Administration(Grant No.2022-35)New Young TeachersResearch Start-Up Foundation of Shanghai Jiao Tong University(Grant No.22X010503668).
文摘As the take-off of China’s macro economy,as well as the rapid development of infrastructure construction,real estate industry,and highway logistics transportation industry,the demand for heavy vehicles is increasing rapidly,the competition is becoming increasingly fierce,and the digital transformation of the production line is imminent.As one of themost important components of heavy vehicles,the transmission front andmiddle case assembly lines have a high degree of automation,which can be used as a pilot for the digital transformation of production.To ensure the visualization of digital twins(DT),consistent control logic,and real-time data interaction,this paper proposes an experimental digital twin modeling method for the transmission front and middle case assembly line.Firstly,theDT-based systemarchitecture is designed,and theDT model is created by constructing the visualization model,logic model,and data model of the assembly line.Then,a simulation experiment is carried out in a virtual space to analyze the existing problems in the current assembly line.Eventually,some improvement strategies are proposed and the effectiveness is verified by a new simulation experiment.
基金This research is supported by the National Natural Science Foundation of China(91646102,L1824039,L1724034,L1624045,and L1524015)the project of China’s Ministry of Education(16JDGC011)+6 种基金the Chinese Academy of Engineering’s consultancy project(2019-ZD-9)the National Science and Technology Major Project(2016ZX04005002)Beijing Natural Science Foundation Project(9182013)the technology projects of the Chinese Academy of Engineering’s China Knowledge Center for Engineering Sciences(CKCEST-2019-2-13,CKCEST-2018-1-13,CKCEST-2017-1-10,and CKCEST-2015-4-2)the UK–China Industry Academia Partnership Programme(UK-CIAPP\260)the Volvo-supported Green Economy and Sustainable Development Projects in the Tsinghua University(20153000181)Tsinghua Initiative Research(2016THZW).
文摘Intelligent technologies are leading to the next wave of industrial revolution in manufacturing.In developed economies,firms are embracing these advanced technologies following a sequential upgrading strategy-from digital manufacturing to smart manufacturing(digital-networked),and then to newgeneration intelligent manufacturing paradigms.However,Chinese firms face a different scenario.On the one hand,they have diverse technological bases that vary from low-end electrified machinery to leading-edge digital-network technologies;thus,they may not follow an identical upgrading pathway.On the other hand,Chinese firms aim to rapidly catch up and transition from technology followers to probable frontrunners;thus,the turbulences in the transitioning phase may trigger a precious opportunity for leapfrogging,if Chinese manufacturers can swiftly acquire domain expertise through the adoption of intelligent manufacturing technologies.This study addresses the following question by conducting multiple case studies:Can Chinese firms upgrade intelligent manufacturing through different pathways than the sequential one followed in developed economies?The data sources include semistructured interviews and archival data.This study finds that Chinese manufacturing firms have a variety of pathways to transition across the three technological paradigms of intelligent manufacturing in nonconsecutive ways.This finding implies that Chinese firms may strategize their own upgrading pathways toward intelligent manufacturing according to their capabilities and industrial specifics;furthermore,this finding can be extended to other catching-up economies.This paper provides a strategic roadmap as an explanatory guide to manufacturing firms,policymakers,and investors.
基金supported in part by the National Natural Science Foundation of China(61233001,61773381,71232006,61304201,61533019,61773382)Finnish TEKES’s project“So Ma2020:Social Manufacturing”(2015-2017,211560)Chinese Guangdong’s S&T project(2015B010103001,2016B090910001)
文摘After reviewing the development of industrial manufacturing, a novel concept called social manufacturing(SM) and service are proposed as an innovative manufacturing solution for the coming personalized customization era. SM can realize a customer's requirements of "from mind to products", and fulfill tangible and intangible needs of a prosumer, i.e., producer and consumer at the same time. It represents a manufacturing trend,and is expected to become popular in more and more industries.First, a comparison between mass customization and SM is given out, and the basis and motivation from social network to SM is analyzed. Then, its basic theories and supporting technologies,like Internet of Things(Io T), social networks, cloud computing,3 D printing, and intelligent systems, are introduced and analyzed,and an SM platform prototype is developed. Finally, three transformation modes towards SM and 3 D printing are suggested for different user cases.
文摘Relying on the construction management of Hangzhouxi Railway Station,this paper analyses the comprehensive application of intelligent construction technology and the establishment of the common data environment(CDE)by using BIM technology.This paper gives the idea that such issues are deeply explored as large-span curved surface structure improvement,steel structure construction monitoring,special-shaped ticket check canopy construction,prefabricated machine room construction,grid construction management,etc.so as to form an intelligent construction management system based on BIM technology.The system has achieved good application results in economic benefits,social benefits and environmental benefits,which can promote the gradual transformation to a more digitalized,networked and intelligent Hangzhouxi Railway Station,and lay a solid foundation for achieving the construction goals of controllable construction period,excellent quality,green and low carbon,etc.
文摘Manufacturing enterprises play an important role in improving the economic environment of a country.Today,the capability to produce high quality products with shorter delivery time and the ability to produce according to the diverse customer requirements has become the characteristics of successful manufacturing industries. Application of intelligent manufacturing systems and Computer integrated manufacturing (CIM) are the most effective methods for overcoming the issues faced by present day manufactures while retaining the employment level and revenue of a country in today’s highly competitive global market. With the developments taking place in CIM and its related technologies,the application of CIM in manufacturing enterprises has become a reality from the dream. This paper highlights the historical developments towards automation and the need for CIM systems. Furthermore,it analyses some new terms such as agile manufacturing,digital manufacturing,agent-based manufacturing and others,which have been emerging recently,and argues all these new technologies are the subsystems of CIM. In addition,this paper provides a new direction in CIM to fulfil the emerging challenges in today’s global market and to satisfy the emerging need of virtual enterprises in the form of Virtual CIM.
基金supported in part by the Science and Technology development fund(FDCT)of Macao(011/2017/A)the National Natural Science Foundation of China(61803397)。
文摘Smart manufacturing refers to optimization techniques that are implemented in production operations by utilizing advanced analytics approaches. With the widespread increase in deploying industrial internet of things(IIOT) sensors in manufacturing processes, there is a progressive need for optimal and effective approaches to data management.Embracing machine learning and artificial intelligence to take advantage of manufacturing data can lead to efficient and intelligent automation. In this paper, we conduct a comprehensive analysis based on evolutionary computing and neural network algorithms toward making semiconductor manufacturing smart.We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes and to address various challenges. We elaborate on the utilization of a genetic algorithm and neural network to propose an intelligent feature selection algorithm. Our objective is to provide an advanced solution for controlling manufacturing processes and to gain perspective on various dimensions that enable manufacturers to access effective predictive technologies.
基金supported by National Key R&D Program of China under Grant 2021YFB3901302 and 2021YFB2900301the National Natural Science Foundation of China under Grant 62271037,62001519,62221001,and U21A20445+1 种基金the State Key Laboratory of Advanced Rail Autonomous Operation under Grant RCS2022ZZ004the Fundamental Research Funds for the Central Universities under Grant 2022JBQY004.
文摘Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With DT channel modeling,the generated channel data can be closer to realistic channel measurements without requiring a prior channel model,and amount of channel data can be significantly increased.Artificial intelligence(AI)based modeling approach shows outstanding performance to solve such problems.In this work,a channel modeling method based on generative adversarial networks is proposed for DT channel,which can generate identical statistical distribution with measured channel.Model validation is conducted by comparing DT channel characteristics with measurements,and results show that DT channel leads to fairly good agreement with measured channel.Finally,a link-layer simulation is implemented based on DT channel.It is found that the proposed DT channel model can be well used to conduct link-layer simulation and its performance is comparable to using measurement data.The observations and results can facilitate the development of DT channel modeling and provide new thoughts for DT channel applications,as well as improving the performance and reliability of intelligent communication networking.
文摘该文将数字孪生技术应用于模块化生产系统(modular production system,MPS)的智能化改造中,构建了基于数字孪生的MPS实践教学平台。依托监控系统和虚实交互等关键技术,增加了MPS数字孪生体的虚拟建模、虚实联调和PLC程序软件在环/硬件在环调试等实训环节;验证了MPS实践教学平台设计方案的可行性;制定了新的教学框架及详细的实训内容和考核方案。最后,将实训内容与大学生竞赛相结合,提高了学生对智能制造、工业生产的认知能力和实践动手能力。