Anode electro-catalysts for direct dimethyl-ether fuel cell (DDFC), Pt/C, PtRu/C (1∶1) and PtSn/C (3∶2), were prepared by chemical impregnation-reductio n method with formaldehyde as the reductant. DME electro-oxida...Anode electro-catalysts for direct dimethyl-ether fuel cell (DDFC), Pt/C, PtRu/C (1∶1) and PtSn/C (3∶2), were prepared by chemical impregnation-reductio n method with formaldehyde as the reductant. DME electro-oxidation and adsorptio n at Pt electrode and Pt electro-catalysts were investigated by Cyclic Voltammet ry(CV), Quasi-steady state polarization and Gas Chromatography(GC). CV showed th at there were two current peaks of DME electro-oxidation at Pt electrode around 0.8V (vs RHE); DME was adsorbed at Pt electrode more weakly and slowly than oxyg en, methanol, even hydrogen; the onset potential of DME oxidation was 50mV less than that of methanol, and DME peak potential 110 mV lower, thus more advantageo us for using in fuel cells than methanol. GC showed that small amount of HCHO wa s generated during DME electro-oxidation. The mechanism of DME electro-oxidation was proposed. Among the three electro-catalysts (Pt/C, PtRu/C and PtSn/C), Pt a lloy catalysts, especially PtRu/C, showed a higher performance toward DME electr o-oxidation, as in the case of methanol. Temperature experiments showed that bot h DME electro-oxidation and adsorption on Pt and Pt alloy catalysts were favored with increased temperature.展开更多
Catalytic combustion of dimethyl ether (DME) over hexaaluminate catalyst BaNi0.2Mn0.8Al11O19-δ has been investigated. The catalysts were prepared with the sol-gel method and reverse microemulsion method respectivel...Catalytic combustion of dimethyl ether (DME) over hexaaluminate catalyst BaNi0.2Mn0.8Al11O19-δ has been investigated. The catalysts were prepared with the sol-gel method and reverse microemulsion method respectively and characterized by thermogravimetry-differential thermal analysis, X-ray diffraction and transimission electron microscope. It was found that the formation of Mn, Ni modified hexaaluminate was a relatively slow process via two solid state reactions and spinel structure was a transition phase. At the same calcined temperature and time, the catalyst prepared with the reverse microemulsion method could form the hexaaluminate phase more easily than that prepared with the sol-gel method. The catalyst BaNi0.2Mn0.8Al11O19-δ prepared with the reverse micro-emulsion method appeared a plate-like morphology, while it appeared a needle-like morphology when using the sol-gel method. The catalytic activities of catalysts BaNi0.2Mn0.8Al11O19-δ prepared with two different methods for DME combustion were tested. It showed that catalyst prepared with the reverse microemulsion method had better catalytic activity, i.e. T10% of DME had decreased by 45℃, about 90% conversion of diemthyl ether at 380℃.展开更多
文摘Anode electro-catalysts for direct dimethyl-ether fuel cell (DDFC), Pt/C, PtRu/C (1∶1) and PtSn/C (3∶2), were prepared by chemical impregnation-reductio n method with formaldehyde as the reductant. DME electro-oxidation and adsorptio n at Pt electrode and Pt electro-catalysts were investigated by Cyclic Voltammet ry(CV), Quasi-steady state polarization and Gas Chromatography(GC). CV showed th at there were two current peaks of DME electro-oxidation at Pt electrode around 0.8V (vs RHE); DME was adsorbed at Pt electrode more weakly and slowly than oxyg en, methanol, even hydrogen; the onset potential of DME oxidation was 50mV less than that of methanol, and DME peak potential 110 mV lower, thus more advantageo us for using in fuel cells than methanol. GC showed that small amount of HCHO wa s generated during DME electro-oxidation. The mechanism of DME electro-oxidation was proposed. Among the three electro-catalysts (Pt/C, PtRu/C and PtSn/C), Pt a lloy catalysts, especially PtRu/C, showed a higher performance toward DME electr o-oxidation, as in the case of methanol. Temperature experiments showed that bot h DME electro-oxidation and adsorption on Pt and Pt alloy catalysts were favored with increased temperature.
基金Supported by the Project of Science and Technology of Guangdong Province (2004B33401003, 2005B10201053), the Natural Science Foundation of Guangdong Province (04205301, 06021468), and the Special Functional Material Foundation of Shenzhen University (0602).
文摘Catalytic combustion of dimethyl ether (DME) over hexaaluminate catalyst BaNi0.2Mn0.8Al11O19-δ has been investigated. The catalysts were prepared with the sol-gel method and reverse microemulsion method respectively and characterized by thermogravimetry-differential thermal analysis, X-ray diffraction and transimission electron microscope. It was found that the formation of Mn, Ni modified hexaaluminate was a relatively slow process via two solid state reactions and spinel structure was a transition phase. At the same calcined temperature and time, the catalyst prepared with the reverse microemulsion method could form the hexaaluminate phase more easily than that prepared with the sol-gel method. The catalyst BaNi0.2Mn0.8Al11O19-δ prepared with the reverse micro-emulsion method appeared a plate-like morphology, while it appeared a needle-like morphology when using the sol-gel method. The catalytic activities of catalysts BaNi0.2Mn0.8Al11O19-δ prepared with two different methods for DME combustion were tested. It showed that catalyst prepared with the reverse microemulsion method had better catalytic activity, i.e. T10% of DME had decreased by 45℃, about 90% conversion of diemthyl ether at 380℃.