Microalgae are photosynthetic microorganisms that function as primary producers in aquatic ecosystems. Some species of microalgae undergo rapid growth and cause harmful blooms in marine ecosystems. Heterocapsa triquet...Microalgae are photosynthetic microorganisms that function as primary producers in aquatic ecosystems. Some species of microalgae undergo rapid growth and cause harmful blooms in marine ecosystems. Heterocapsa triquetra is one of the most common bloom-forming species in estuarine and coastal waters worldwide. Although this species does not produce toxins, unlike some other Heterocapsa species, the high density of its blooms can cause significant ecological damage. We developed a H. triquetra species-specific nuclease protection assay sandwich hybridization(NPA-SH) probe that targets the large subunit of ribosomal RNA(LSU r RNA). We tested probe specificity and sensitivity with five other dinoflagellates that also cause red tides. Our assay detected H.triquetra at a concentration of 1.5×10^4 cells/m L, more sensitive than required for a red-tide guidance warning by the Korea Ministry of Oceans and Fisheries in 2015(3.0×10^4 cells/m L). We also used the NPA-SH assay to monitor H. triquetra in the Tongyeong region of the southern sea area of Korea during 2014. This method could detect H.triquetra cells within 3 h. Our assay is useful for monitoring H. triquetra under field conditions.展开更多
-The effect of wave group on wave run-up on a slope dike is mainly discussed in this paper. Two simulating methods of wave group and their applications in laboratory are introduced. Synthesizing the research results o...-The effect of wave group on wave run-up on a slope dike is mainly discussed in this paper. Two simulating methods of wave group and their applications in laboratory are introduced. Synthesizing the research results of wave run-up on a slope dike, the effect of wave group on wave run-up on a slope dike in coastal protection engineering is studied as the main point.展开更多
山区沿河公路常由于弯道水流冲刷而发生水毁.为进一步认识丁坝和挡土墙配合这一沿河路基水毁防治方案的防护机理,采用现代三维运动界面追踪技术VOF(volume of fluid)方法和标准k—ε模型耦合求解,对圆心角为90°弯道中设置丁坝的三...山区沿河公路常由于弯道水流冲刷而发生水毁.为进一步认识丁坝和挡土墙配合这一沿河路基水毁防治方案的防护机理,采用现代三维运动界面追踪技术VOF(volume of fluid)方法和标准k—ε模型耦合求解,对圆心角为90°弯道中设置丁坝的三维流场进行了分析研究,指出丁坝和挡土墙配合防护沿河路基是通过改变弯道水流的流场结构,使水流偏离被防护的路基或将冲刷区变为淤积区,从而达到冲刷防护目的的.展开更多
基金The Public Welfare&Safety Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT&Future Planning under contract No.NRF-2013M3A2A1067529
文摘Microalgae are photosynthetic microorganisms that function as primary producers in aquatic ecosystems. Some species of microalgae undergo rapid growth and cause harmful blooms in marine ecosystems. Heterocapsa triquetra is one of the most common bloom-forming species in estuarine and coastal waters worldwide. Although this species does not produce toxins, unlike some other Heterocapsa species, the high density of its blooms can cause significant ecological damage. We developed a H. triquetra species-specific nuclease protection assay sandwich hybridization(NPA-SH) probe that targets the large subunit of ribosomal RNA(LSU r RNA). We tested probe specificity and sensitivity with five other dinoflagellates that also cause red tides. Our assay detected H.triquetra at a concentration of 1.5×10^4 cells/m L, more sensitive than required for a red-tide guidance warning by the Korea Ministry of Oceans and Fisheries in 2015(3.0×10^4 cells/m L). We also used the NPA-SH assay to monitor H. triquetra in the Tongyeong region of the southern sea area of Korea during 2014. This method could detect H.triquetra cells within 3 h. Our assay is useful for monitoring H. triquetra under field conditions.
文摘-The effect of wave group on wave run-up on a slope dike is mainly discussed in this paper. Two simulating methods of wave group and their applications in laboratory are introduced. Synthesizing the research results of wave run-up on a slope dike, the effect of wave group on wave run-up on a slope dike in coastal protection engineering is studied as the main point.
文摘山区沿河公路常由于弯道水流冲刷而发生水毁.为进一步认识丁坝和挡土墙配合这一沿河路基水毁防治方案的防护机理,采用现代三维运动界面追踪技术VOF(volume of fluid)方法和标准k—ε模型耦合求解,对圆心角为90°弯道中设置丁坝的三维流场进行了分析研究,指出丁坝和挡土墙配合防护沿河路基是通过改变弯道水流的流场结构,使水流偏离被防护的路基或将冲刷区变为淤积区,从而达到冲刷防护目的的.