Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A light...Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A lightweight network of two channels is bulit based on the combination of convolutional neural network(CNN)and graph convolutional network(GCN).CNNs learn feature difference maps of multitemporal images,and attention modules adaptively fuse CNN-based and graph-based features for different scales.GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels,generating change maps.Experimental evaluation on two datasets validates the efficacy of the pro-posed method in addressing false alarms.展开更多
基金This work was supported by the Natural Science Foundation of Heilongjiang Province(LH2022F049).
文摘Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A lightweight network of two channels is bulit based on the combination of convolutional neural network(CNN)and graph convolutional network(GCN).CNNs learn feature difference maps of multitemporal images,and attention modules adaptively fuse CNN-based and graph-based features for different scales.GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels,generating change maps.Experimental evaluation on two datasets validates the efficacy of the pro-posed method in addressing false alarms.
文摘针对背景复杂、遮挡、人群分布不均等人群计数常见问题,提出了一种结合联合损失的空间-通道双注意力机制卷积神经网络模型(joint loss-based space-channel dual attention network,JL-SCDANet).该网络前端进行图像粗粒度特征提取,中间加入空间注意力机制以及通道注意力机制突出图像重点区域,后端使用可加大感受野且不丢失图像分辨率的空洞卷积提取深层二维特征.此外,该模型结合联合损失函数进行训练,以增强模型的鲁棒性.为了验证模型的改进效果,在3个公共数据集(ShanghaiTech Part B、mall和UCF_CC_50)上分别进行了对比实验,在ShanghaiTech Part B数据集中平均绝对误差(MAE)和均方误差(MSE)分别达到了8.13和13.13;在mall数据集中MAE、MSE达到了1.78和2.28;在UCF_CC_50数据集中MAE、MSE分别达到了182.12和210.24,实验结果证明了该网络在提高人数统计准确率上的有效性.