期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
有限训练样本下的多尺度空洞密集网络高光谱影像分类
1
作者 涂潮 刘万军 +1 位作者 赵琳琳 曲海成 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第4期206-216,共11页
为了在有限训练样本情况下充分提取高光谱影像的空间光谱特征,提高分类精度,提出一种结合空洞卷积和密集网络的高光谱影像分类方法。首先,构建多尺度空洞特征提取模块,引入不同数量的空洞卷积层和普通卷积层通过级联的方式增大模型的感... 为了在有限训练样本情况下充分提取高光谱影像的空间光谱特征,提高分类精度,提出一种结合空洞卷积和密集网络的高光谱影像分类方法。首先,构建多尺度空洞特征提取模块,引入不同数量的空洞卷积层和普通卷积层通过级联的方式增大模型的感受野,并提取多尺度特征。然后,在多尺度空洞特征提取模块之间建立密集连接,实现特征复用的同时缓解梯度消失问题,而模块内部无密集连接,避免构建深度网络而导致网络参数过多的问题。最后,将得到的特征依次通过池化层,全连接层和Softmax层完成分类。另外,本文在全连接层后加入dropout正则化防止出现过拟合。在Indian Pines和WHU-Hi-Longkou数据集上与经典分类方法进行对比,本文方法 OA分别为98.75%和98.82%。实验结果表明,本文设计的网络模型在有限训练样本情况下,分类效果最优。 展开更多
关键词 高光谱影像 多尺度特征融合 空洞卷积 密集网络
下载PDF
基于DenseMedic网络的脑皮层下结构的语义分割 被引量:4
2
作者 杨斌斌 刘霖雯 张唯唯 《中国生物医学工程学报》 CAS CSCD 北大核心 2020年第6期652-666,共15页
脑皮层下结构分割问题是神经科及其他相关疾病计算机辅助诊断和治疗的基础。通过分割和分析核磁共振图像中的脑结构,可以对自闭症谱系障碍、脑卒中、脑肿瘤等疾病进行早期诊断和治疗。为解决精准脑结构分割的问题,基于深度学习基本理论... 脑皮层下结构分割问题是神经科及其他相关疾病计算机辅助诊断和治疗的基础。通过分割和分析核磁共振图像中的脑结构,可以对自闭症谱系障碍、脑卒中、脑肿瘤等疾病进行早期诊断和治疗。为解决精准脑结构分割的问题,基于深度学习基本理论,提出一种DenseMedic网络的核磁共振图像脑皮层下结构的分割算法。首先,OreoDown方法通过较早地增大卷积核的步长增大特征感受野的增长速度,并使用不变尺寸的卷积层夹心式地恢复网络深度,使速度的增加带来有效的感受野增加;其次,DenseMedic使用Dense Net的思想实例化OreoDown框架,通过密集连接的特征提取操作来获取多尺度的上下文信息;最后,在各层中使用混合空洞卷积进一步扩大感受野,解决特征感知过于粗糙的问题。采用Dice相似度系数(DSC)、交并比(IoU)、95%Hausdorff表面距离(HSD95)和平均表面距离(ASD) 4个指标,评价神经网络的分割性能。在公开的IBSR数据集的18例图像上进行实验,算法的4个指标分别达到89.2%、80.7%、1.982和0.882;在公开的MBBrainS18数据集的7例图像上的实验显示,算法的4个指标分别达到88.7%、79.8%、1.249和0.570。实验表明,所提出的算法使脑结构的分割结果与真实结构在区域上有更多的重叠,在轮廓上更加相似,可以更好地完成各个脑皮层下结构的分割。在临床应用中,对脑皮层下结构的精准分割将有助于准确测量相关疾病诊断的关键指标,并实现快速的计算机辅助治疗。 展开更多
关键词 全卷积神经网络 阶梯式降采样 密集连接 混合空洞卷积
下载PDF
基于密集扩张卷积残差网络的地震数据随机噪声压制方法 被引量:1
3
作者 高磊 沈侯森 闵帆 《石油物探》 CSCD 北大核心 2023年第4期655-668,共14页
地震数据处理过程中压制随机噪声是提高地震数据质量的重要环节之一,其关键是有效压制噪声并尽可能地保留有效信号。针对深度学习方法在地震数据去噪处理时局部特征提取的局限性,提出了一种基于密集扩张卷积残差网络(DDCRN)的去噪方法。... 地震数据处理过程中压制随机噪声是提高地震数据质量的重要环节之一,其关键是有效压制噪声并尽可能地保留有效信号。针对深度学习方法在地震数据去噪处理时局部特征提取的局限性,提出了一种基于密集扩张卷积残差网络(DDCRN)的去噪方法。DDCRN主要由多个密集扩张卷积特征融合块(DDCFFB)构成,DDCFFB内部的密集块和多尺度扩张卷积可以用来并行提取特征,融合结构可以用来融合特征,残差结构则跳跃连接通道数。其中,密集块连接不同的卷积层来学习特征,关注局部特征的传播和重用,高效提取复杂信息;多尺度扩张卷积扩大感受野,增加特征提取范围;残差学习则加快网络训练的收敛速度。分别采用K奇异值分解(KSVD)、频域空间域反卷积(f-x decon)、去噪卷积神经网络(DnCNN)、U型网络(Unet)以及DDCRN去噪方法对合成地震数据和实际地震数据进行去噪处理。结果表明,DDCRN去噪方法不仅能更有效地压制随机噪声,同时还能更完整地保留同相轴的连续性。 展开更多
关键词 地震数据去噪 特征融合 卷积神经网络 密集块 扩张卷积
下载PDF
基于空洞卷积与双注意力机制的红外与可见光图像融合 被引量:2
4
作者 何乐 李忠伟 +2 位作者 罗偲 任鹏 隋昊 《红外技术》 CSCD 北大核心 2023年第7期732-738,共7页
针对红外与可见光图像融合算法中多尺度特征提取方法损失细节信息,且现有的融合策略无法平衡视觉细节特征和红外目标特征,出了基于空洞卷积与双注意力机制(Dilated Convolution and Dual AttentionMechanism,DCDAM)的融合网络。该网络... 针对红外与可见光图像融合算法中多尺度特征提取方法损失细节信息,且现有的融合策略无法平衡视觉细节特征和红外目标特征,出了基于空洞卷积与双注意力机制(Dilated Convolution and Dual AttentionMechanism,DCDAM)的融合网络。该网络首先通过多尺度编码器从图像中提取原始特征,其中编码器利用空洞卷积来系统地聚合多尺度上下文信息而不通过下采样算子。其次,在融合策略中引入双注意力机制,将获得的原始特征输入到注意力模块进行特征增强,获得注意力特征;原始特征和注意力特征合成最终融合特征,得在不丢失细节信息的情况下捕获典型信息,同时抑制融合过程中的噪声干扰。最后,解码器采用全尺度跳跃连接和密集网络对融合特征进行解码生成融合图像。通过实验表明,DCDAM比其他同类有代表性的方法在定性和定量指标评价都有提高,体现良好的融合视觉效果。 展开更多
关键词 图像融合 空洞卷积 多尺度结构 密集网络
下载PDF
基于改进YOLOv3的列车运行环境图像小目标检测算法
5
作者 梁美佳 刘昕武 胡晓鹏 《计算机应用》 CSCD 北大核心 2023年第8期2611-2618,共8页
列车辅助驾驶离不开对列车运行环境的实时检测,而列车运行环境图像存在丰富的小目标。与大中型目标相比,目标占原图比例小于1%的小目标由于分辨率低而存在误检率高、检测精度较差的问题,因此提出一种基于改进YOLOv3的列车运行环境目标... 列车辅助驾驶离不开对列车运行环境的实时检测,而列车运行环境图像存在丰富的小目标。与大中型目标相比,目标占原图比例小于1%的小目标由于分辨率低而存在误检率高、检测精度较差的问题,因此提出一种基于改进YOLOv3的列车运行环境目标检测算法YOLOv3-TOEI (YOLOv3-Train Operating Environment Image)。首先,利用k-means聚类算法优化anchor,从而提高网络的收敛速度;然后,在DarkNet-53中嵌入空洞卷积以增大感受野,并引入稠密卷积网络(DenseNet)获取更丰富的图像底层细节信息;最后,将原始YOLOv3的单向特征融合结构改进为双向自适应特征融合结构,从而实现深浅层特征的有效结合,并提高网络对多尺度目标(特别是小目标)的检测效果。实验结果表明,与原YOLOv3算法相比,YOLOv3-TOEI算法的平均精度均值(mAP)@0.5达到84.5%,提升了12.2%,每秒传输帧数(FPS)为83,拥有更好的列车运行环境图像小目标检测能力。 展开更多
关键词 列车辅助驾驶 小目标检测 空洞卷积 稠密卷积网络 特征融合 通道注意力机制
下载PDF
基于空洞卷积的街景影像多目标检测方法研究
6
作者 张修祥 《测绘与空间地理信息》 2023年第9期186-189,共4页
针对街景影像中的目标背景复杂、尺寸跨度大、小目标数量多等问题,提出一种基于卷积神经网络的检测方法。首先利用空洞卷积核及快捷链路机制构建了具备跨层信息传递的特征提取网络;然后利用密集连接技术构建了跨尺度上采样特征强化金字... 针对街景影像中的目标背景复杂、尺寸跨度大、小目标数量多等问题,提出一种基于卷积神经网络的检测方法。首先利用空洞卷积核及快捷链路机制构建了具备跨层信息传递的特征提取网络;然后利用密集连接技术构建了跨尺度上采样特征强化金字塔,输出4个不同尺度特征图;最后根据街景影像中的目标尺寸特点精准设计锚点框,加快模型训练初期的收敛速度。测试结果表明,所提方法在开源数据集CCTSDB上对所有目标的综合检测精度达到了90.56%,同时检测速度可达到每秒37帧,说明模型能够在复杂街景环境下对多类目标实施快速精准的检测。 展开更多
关键词 街景影像 多目标检测 卷积神经网络 空洞卷积 密集连接
下载PDF
基于空洞-稠密网络的交通拥堵预测模型 被引量:4
7
作者 石敏 蔡少委 易清明 《上海交通大学学报》 EI CAS CSCD 北大核心 2021年第2期124-130,共7页
在利用卷积神经网络模型对短时交通拥堵情况等预测场景进行预测时,由于模型的卷积池化操作过程会丢失部分数据,使得目标位置的信息出现丢失及特征的分辨率持续下降,导致模型的预测能力降低.针对此,本文提出一种空洞-稠密神经网络模型.首... 在利用卷积神经网络模型对短时交通拥堵情况等预测场景进行预测时,由于模型的卷积池化操作过程会丢失部分数据,使得目标位置的信息出现丢失及特征的分辨率持续下降,导致模型的预测能力降低.针对此,本文提出一种空洞-稠密神经网络模型.首先,利用空洞卷积用较少的网络参数获取更大感受野的特点,充分提取出复杂多变的数据时空特征.其次,通过下采样及稠密网络的等值映射,解决参数在神经网络层数增加过程出现退化的问题.最后,取实际的城市道路平均车速数据块对网络结构的有效性进行验证.结果表明:同卷积神经网络模型相比,该网络结构预测平均绝对误差降低3%~23%. 展开更多
关键词 空洞-稠密网络 时空特征 卷积神经网络 短时交通拥堵预测
下载PDF
基于小波变换和优化CNN的风电齿轮箱故障诊断 被引量:21
8
作者 温竹鹏 陈捷 +1 位作者 刘连华 焦玲玲 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第6期1212-1219,共8页
针对传统故障诊断方法过于依赖人为经验的缺陷,提出小波变换和二维密集连接扩张卷积神经网络(WT-ICNN)的风电齿轮箱智能故障诊断方法.所提方法将一维振动信号通过连续小波变换(WT)转换成二维故障图像;再将二维故障图像输入ICNN中进行训... 针对传统故障诊断方法过于依赖人为经验的缺陷,提出小波变换和二维密集连接扩张卷积神经网络(WT-ICNN)的风电齿轮箱智能故障诊断方法.所提方法将一维振动信号通过连续小波变换(WT)转换成二维故障图像;再将二维故障图像输入ICNN中进行训练和测试.通过齿轮箱开源数据和风场实测数据验证结果表明,与传统故障诊断方法相比,所提方法采用密集连接的结构自适应特征提取时频图,有效加强了故障特征的利用效率;在对风电齿轮箱的故障诊断中,所提方法具有更好的特征复用能力和更高的诊断精度. 展开更多
关键词 风电齿轮箱 小波变换 卷积神经网络 密集连接 扩张卷积
下载PDF
密集连接扩张卷积神经网络的单幅图像去雾 被引量:7
9
作者 刘广洲 李金宝 +1 位作者 任东东 舒明雷 《计算机科学与探索》 CSCD 北大核心 2021年第1期185-194,共10页
针对大多数图像去雾算法模型参数估计准确性差及色彩失真等问题,提出了一种端到端的密集连接扩张卷积神经网络。首先,通过使用多层密集连接结构来增加网络的特征利用率,避免网络加深时的梯度消失现象。其次,通过在密集块中使用不同扩张... 针对大多数图像去雾算法模型参数估计准确性差及色彩失真等问题,提出了一种端到端的密集连接扩张卷积神经网络。首先,通过使用多层密集连接结构来增加网络的特征利用率,避免网络加深时的梯度消失现象。其次,通过在密集块中使用不同扩张率的扩张卷积,使网络在充分聚合上下文特征信息时不损失空间分辨率,并避免了网格伪影的产生。最后,为了提高算法的去雾能力,将该网络划分为多个阶段,并在每个阶段引入侧输出模块,从而获得更精确的特征信息。实验结果表明,所提出的去雾算法无论是在合成数据集上还是在真实数据集上都取得了较好的去雾效果,恢复的色彩更接近无雾图像,并且定量评价指标峰值信噪比(PSNR)和结构相似性(SSIM)均优于其他对比方法。 展开更多
关键词 图像去雾 卷积神经网络(CNN) 密集连接 扩张卷积
下载PDF
基于膨胀卷积和稠密连接的烟雾识别方法 被引量:3
10
作者 程广涛 巩家昌 赵洪伟 《计算机工程》 CAS CSCD 北大核心 2020年第4期253-259,共7页
为更好地提取烟雾图像的全局特征,提出一种基于膨胀卷积和稠密连接的烟雾识别方法.依次堆叠膨胀率不同的膨胀卷积,扩大卷积核的感受野,使得卷积核能够感知更广泛的烟雾图像区域,在不同膨胀卷积层之间设计稠密连接机制,促进卷积层之间的... 为更好地提取烟雾图像的全局特征,提出一种基于膨胀卷积和稠密连接的烟雾识别方法.依次堆叠膨胀率不同的膨胀卷积,扩大卷积核的感受野,使得卷积核能够感知更广泛的烟雾图像区域,在不同膨胀卷积层之间设计稠密连接机制,促进卷积层之间的信息流通,实现烟雾图像局部特征和全局特征的融合.在此基础上,构造应用于烟雾识别的深度卷积神经网络,并在训练样本和标签的凸组合上完成训练以增强模型的泛化能力.实验结果表明,与AlexNet、VGG16等方法相比,该方法具有较好的烟雾特征表达能力,能在提高烟雾识别效果的同时,减小模型尺寸效果,其实用性较好. 展开更多
关键词 烟雾识别 卷积神经网络 膨胀卷积 稠密连接 数据增强
下载PDF
基于互相关特征图和扩张稠密卷积网络的SFBC-OFDM识别方法 被引量:3
11
作者 张聿远 张立民 闫文君 《系统工程与电子技术》 EI CSCD 北大核心 2021年第9期2657-2664,共8页
针对传统的空频分组码(space-frequency block code,SFBC)识别方法存在人工提取特征困难、低信噪比(signal tOnoise ratio,SNR)下识别准确率低和不适用于非协作通信的问题,提出一种基于互相关特征图和扩张稠密卷积网络的SFBC自动识别方... 针对传统的空频分组码(space-frequency block code,SFBC)识别方法存在人工提取特征困难、低信噪比(signal tOnoise ratio,SNR)下识别准确率低和不适用于非协作通信的问题,提出一种基于互相关特征图和扩张稠密卷积网络的SFBC自动识别方法。首先,计算接收端频域上的互相关函数并进行维度变换,得到二维互相关特征图。然后,对得到的特征图进行预处理以扩大卷积核感受的有效区域,去除图像冗余信息。最后,构建扩张稠密卷积网络以自动提取预处理图像特征,实现SFBC分类识别。仿真结果表明,SNR为-8 dB时,该方法对SFBC信号的识别准确率达到了96.1%。相比于传统算法,该方法具有更好的抗低SNR和特征自提取能力,验证了深度学习方法在SFBC识别领域的有效性,为该领域的后续研究奠定了基础。 展开更多
关键词 非协作通信 空频分组码 互相关特征图 图像预处理 深度学习 扩张稠密卷积网络
下载PDF
用于单音音乐音高估计的密集扩张卷积残差网络 被引量:1
12
作者 马文芳 胡英 +1 位作者 王天军 谢永胜 《东北师大学报(自然科学版)》 CAS 北大核心 2022年第3期90-97,共8页
针对单音音乐提出一种密集扩张卷积残差网络(Dense Dilated Convolution Residual Network, DDCRN)音高估计算法.探讨了密集扩张卷积、残差模块两种不同的通道数设置对网络参数量和性能的影响.分别在iKala、MIR-1K和MDB-stem-synth数据... 针对单音音乐提出一种密集扩张卷积残差网络(Dense Dilated Convolution Residual Network, DDCRN)音高估计算法.探讨了密集扩张卷积、残差模块两种不同的通道数设置对网络参数量和性能的影响.分别在iKala、MIR-1K和MDB-stem-synth数据集上训练提出的各种残差网络.实验结果表明,密集扩张卷积残差网络在参数量较小的情况下获得了最佳性能. 展开更多
关键词 音高估计 密集扩张卷积 残差网络 卷积门控线性单元 注意力机制
下载PDF
基于卷积神经网络胃癌分割与T分期算法 被引量:1
13
作者 周意龙 卫子然 +2 位作者 蔡清萍 高永彬 马硕 《中国医学物理学杂志》 CSCD 2022年第2期215-223,共9页
基于胃癌CT图像准确分割胃癌和精准预测胃壁肿瘤浸润深度对于筛查胃部疾病、临床诊断、术前预测、术后评估计划至关重要。为了准确地从胃癌CT图像分割出胃癌并对肿瘤进行定性分期,提出一种基于卷积神经网络的胃癌分割与T分期算法(SC-Net... 基于胃癌CT图像准确分割胃癌和精准预测胃壁肿瘤浸润深度对于筛查胃部疾病、临床诊断、术前预测、术后评估计划至关重要。为了准确地从胃癌CT图像分割出胃癌并对肿瘤进行定性分期,提出一种基于卷积神经网络的胃癌分割与T分期算法(SC-Net)。SC-Net有两条主干线:分割主线、分类主线。这种新型算法分为两步进行训练:第一步只训练分割主线得到肿瘤的粗分割结果,然后在第一步基础之上联合训练分割分类主线得到最终的精分割和肿瘤T分期结果。为了提高算法对胃癌区域的关注度,提出了注意力机制加强算法的准确性。此外还使用多核残差模块和密集连接空洞卷积模块提取深层的特征信息。对所提算法进行定性定量分析。实验表明所提方法在胃癌分割和T分期上均优于同类方法,所提方法有作为筛查胃部疾病、辅助医生诊断的潜力。 展开更多
关键词 卷积神经网络 胃癌 分割 T分期 注意力机制 多核残差 密集空洞卷积
下载PDF
基于空洞卷积的密集连接网络人流量预测模型
14
作者 刘培培 赵岭忠 +1 位作者 翟仲毅 郑鹏鹏 《桂林电子科技大学学报》 2021年第5期375-381,共7页
针对人流量数据的时空特性和外部因素等对预测精度的影响,提出一种基于空洞卷积的密集连接网络人流量预测模型。通过空洞密集连接模块捕获相邻区域之间的空间依赖关系,采用SE-LSTM模块帮助网络学习更重要的特征并学习数据中的周期性和... 针对人流量数据的时空特性和外部因素等对预测精度的影响,提出一种基于空洞卷积的密集连接网络人流量预测模型。通过空洞密集连接模块捕获相邻区域之间的空间依赖关系,采用SE-LSTM模块帮助网络学习更重要的特征并学习数据中的周期性和动态时间性;对于外部因素,利用全连接网络对天气、假期、事件等数据进行处理来辅助预测。采用2个公开的数据集验证提出的模型。实验结果表明,与其他基线模型相比,该模型将预测误差分别从6.33、16.69降低到5.30、15.41,能够更好地学习数据中的时空依赖关系,提升预测精度。 展开更多
关键词 深度学习 人流量预测 时空数据 空洞卷积 密集连接网络
下载PDF
基于深度学习的岩石薄片正交偏光图像多曝光融合算法
15
作者 王杰 晏鹏程 +1 位作者 何小海 滕奇志 《长江信息通信》 2021年第3期47-51,共5页
针对正交偏光下岩石薄片图像中动态范围较低,无法观察全部颗粒的问题,将深度学习应用于多曝光图像融合算法,通过融合多个曝光度的薄片图像来获取较高的动态范围。首先将低动态范围的多曝光图像序列输入卷积神经网络,然后网络通过优化损... 针对正交偏光下岩石薄片图像中动态范围较低,无法观察全部颗粒的问题,将深度学习应用于多曝光图像融合算法,通过融合多个曝光度的薄片图像来获取较高的动态范围。首先将低动态范围的多曝光图像序列输入卷积神经网络,然后网络通过优化损失函数获取较好的权重图预测结果,最后由源多曝光图像序列联合权重图加权融合得到具有较高动态范围的薄片图像。对比实验表明,该算法可以有效地提升图像中的颗粒清晰度。 展开更多
关键词 正交偏光图像 多曝光图像融合 混合空洞卷积 密集连接 神经网络
下载PDF
基于堆叠树形聚合结构空洞卷积的肝脏肿瘤分割 被引量:4
16
作者 高飞 闫镔 +3 位作者 陈健 乔凯 宁培钢 史大鹏 《光学学报》 EI CAS CSCD 北大核心 2021年第18期73-84,共12页
为了克服传统肝脏肿瘤分割网络下采样带来的细节信息丢失问题,同时提取丰富的多尺度信息,提出了一种基于堆叠树形聚合结构空洞卷积的肝脏肿瘤分割算法。首先,在编码器网络中提出了残差密集模块;然后,在编码器-解码器网络中加入树形聚合... 为了克服传统肝脏肿瘤分割网络下采样带来的细节信息丢失问题,同时提取丰富的多尺度信息,提出了一种基于堆叠树形聚合结构空洞卷积的肝脏肿瘤分割算法。首先,在编码器网络中提出了残差密集模块;然后,在编码器-解码器网络中加入树形聚合结构的空洞卷积模块,有效消除了普通空洞卷积带来的棋盘伪影现象,提高了分割精度。最后,用加权的损失函数解决了图像中前景和背景不平衡的问题。实验结果表明,本算法在电子计算机断层扫描图像数据集上的Dice相似度系数、像素正确率和交并比分别为0.8026、0.7974和0.7317。 展开更多
关键词 图像处理 残差网络 密集连接 空洞卷积 肝脏肿瘤
原文传递
改进特征金字塔网络的遥感影像崩滑体提取 被引量:1
17
作者 高琛 冯德俊 +1 位作者 胡金林 王杰茜 《测绘科学》 CSCD 北大核心 2021年第11期32-38,46,共8页
针对大多数网络存在精度低,特征冗余,计算量大,训练时间长等问题,提出密集连接特征金字塔网络(DCFPN),将特征提取网络得到的特征图通过一组并行深度可分离空洞卷积进一步计算其全局语义信息,并搭建解码上采样网络,加入连接组合特征层的... 针对大多数网络存在精度低,特征冗余,计算量大,训练时间长等问题,提出密集连接特征金字塔网络(DCFPN),将特征提取网络得到的特征图通过一组并行深度可分离空洞卷积进一步计算其全局语义信息,并搭建解码上采样网络,加入连接组合特征层的结构,对遥感影像进行语义分割实现崩滑体提取,较好地解决了参数量过多,计算时间较长和精度较低等问题。通过特征金字塔网络(FPN)和DCFPN在崩滑体数据集上的大量对比实验表明,DCFPN在崩滑体语义分割方面有更高的精度并且计算量更少,训练时间更短,能够更好地为应急抢险工作。 展开更多
关键词 崩滑体 密集连接特征金字塔网络 深度可分离卷积 空洞卷积
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部