期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Considerations of rock dilation on modeling failure and deformation of hard rocks-a case study of the mine-by test tunnel in Canada 被引量:9
1
作者 Xingguang Zhao Meifeng Cai MCai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第4期338-349,共12页
For the compressive stress-induced failure of tunnels at depth, rock fracturing process is often closely associated with the generation of surface parallel fractures in the initial stage, and shear failure is likely t... For the compressive stress-induced failure of tunnels at depth, rock fracturing process is often closely associated with the generation of surface parallel fractures in the initial stage, and shear failure is likely to occur in the final process during the formation of shear bands, breakouts or V-shaped notches close to the excavation boundaries. However, the perfectly elastoplastic, strain-softening and elasto-brittle-plastic models cannot reasonably describe the brittle failure of hard rock tunnels under high in-situ stress conditions. These approaches often underestimate the depth of failure and overestimate the lateral extent of failure near the excavation. Based on a practical case of the mine-by test tunnel at an underground research laboratory (URL) in Canada, the influence of rock mass dilation on the depth and extent of failure and deformation is investigated using a calibrated cohesion weakening and frictional strengthening (CWFS) model. It can be found that, when modeling brittle failure of rock masses, the calibrated CWFS model with a constant dilation angle can capture the depth and extent of stress-induced brittle failure in hard rocks at a low confinement if the stress path is correctly represented, as demonstrated by the failure shape observed in the tunnel. However, using a constant dilation angle cannot simulate the nonlinear deformation behavior near the excavation boundary accurately because the dependence of rock mass dilation on confinement and plastic shear strain is not considered. It is illustrated from the numerical simulations that the proposed plastic shear strain and confinement-dependent dilation angle model in combination with the calibrated CWFS model implemented in FLAC can reasonably reveal both rock mass failure and displacement distribution in vicinity of the excavation simultaneously. The simulation results are in good agreement with the field observations and displacement measurement data. 展开更多
关键词 hard rocks brittle failure deformation dilation angle model confinement plastic shear strain mine-by test tunnel
下载PDF
Improved slope safety analysis by new Druker-Prager type criterion 被引量:1
2
作者 朱俊高 彭凯 +1 位作者 J.F.Shao 刘汉龙 《Journal of Central South University》 SCIE EI CAS 2012年第4期1132-1137,共6页
Based on Mohr-Coulomb (M-C) criterion, the parameters of Druker-Prager (D-P) criterion for geomaterial were determined under non-associated flow rule, and thus a new D-P type criterion was presented. Two assumptio... Based on Mohr-Coulomb (M-C) criterion, the parameters of Druker-Prager (D-P) criterion for geomaterial were determined under non-associated flow rule, and thus a new D-P type criterion was presented. Two assumptions were employed during the derivation: 1) principal strains by M-C model and D-P model are equal, and 2) the material is under plane strain condition. Based on the analysis of the surface on rt plane, it is found that the proposed D-P type criterion is better than the D-P criterion with M-C circumscribed circle or M-C inscribed circle, and is applicable for stress Lode angle less than zero. By comparing the predicted results with the test data of sand under plane strain condition and other D-P criteria, the proposed criterion is verified and agrees well with the test data, which is further proved to be better than other D--P type criteria in certain range of Lode angle. The criterion was compiled into a finite difference package FLAC3D by user-subroutine, and was used to analyze the stability of a slope by strength reduction method. The predicted slope safety factor from the proposed criterion agrees well with that by Spencer method, and it is more accurate than that from classic D-P criteria. 展开更多
关键词 yield criterion non-associated flow rule dilatancy angle plastic potential function
下载PDF
Intermittent slipping of landslide regulated by dilatancy evolution and velocity-weakening friction law: an efficient numerical scheme
3
作者 JAN Chyan-deng YANG Ray-yeng +1 位作者 HWUNG Hwung-hweng CHEN Wen-yau 《Journal of Mountain Science》 SCIE CSCD 2016年第8期1333-1344,共12页
When a block of dense sandy soil moves downhill, the shear-induced soil dilatancy along the basal shear boundary produces a negative value of excess pore pressure that increases the basal frictional resistance. Dilata... When a block of dense sandy soil moves downhill, the shear-induced soil dilatancy along the basal shear boundary produces a negative value of excess pore pressure that increases the basal frictional resistance. Dilatancy angle,Ψ, the degree to which the basal soil dilates due to the shear, normally evolves during slope failure. A study by other researchers shows that if Ψ is constant, the block of dense soil will remain stable(or unstable) sliding when the velocity-weakening rate of the basal friction coefficient of the block is small(or large) enough. Moreover, during unstable sliding processes, the block of dense soil exhibits "periodic" patterns of intermittent slipping. Here, we used a more efficient and accurate numerical scheme to revisit that study. We expanded their model by assuming Ψ evolves during slope failure. Consequently, we acquired completely different results. For instance, even though the velocity-weakening rate of the friction coefficient is fixed at the same smaller(or larger) value that those researchers use, the stable(or unstable) steady states of landslide they predict will inversely change to unstable(or stable) when Ψ decreases(or increases) with the increase of slide displacement to a value small(or large) enough. Particularly, in unstable processes, the soil block exhibits "aperiodic" styles of intermittent slipping, instead of "periodic". We found out that the stick states appearing later last longer(or shorter) in the case of decreasing(or increasing) Ψ. Moreover, because the basic states of landslides with impacts of dilatancy evolution are not steady nor periodic, traditional stability-analysis methods cannot be "directly" used to analyze the stability of such landslides. Here, we broke through this technical problem to a degree. We showed that combining a concept called "quasi-steady-state approximation" with a traditional stability-analysis technique can qualitatively predict the instability onset of the landslides. Through this study, we demonstrated that the combination of Chebyshev collocation(CC) and 4^(th)-order Runge-Kutta methods is more accurate and efficient than the numerical scheme those researchers use. 展开更多
关键词 LANDSLIDE Stability analysis Intermittent slipping Dilatancy angle
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部