Structural and magnetic properties are investigated for Fe1-xMnxV2O4 (0≤ x ≤ 1) spinels. As orbital-active Fe^2+ is substituted with Mn^2+, the cubie-to-tetragonM transition TsI and the tetragonal-to-orthorhombi...Structural and magnetic properties are investigated for Fe1-xMnxV2O4 (0≤ x ≤ 1) spinels. As orbital-active Fe^2+ is substituted with Mn^2+, the cubie-to-tetragonM transition TsI and the tetragonal-to-orthorhombic transition Ts2 gradually decrease. These structural transitions originate from the Fe^2+ ferro-orbital order (F-OO). Below Yafet-Kittel (YK) magnetic transition TN2, V^3+ orbital order (V-OO) plays an important role on global structure. Here x = 0.6 is a critical point. Fe^2+ F-OO and V^3+ F-OO coexist for 0 ≤ x ≤ 0.5. For x≥ 0.6, the orbital pattern of V^3+ is antiferro (AF)-00, and Fe^2+ F-OO disappears. Structural transition Ts3, accompanied by YK magnetic transition TN2, decreases initially, and then increases at x = 0.6. A scenario for the complex phase diagram arising from the cooperation or competition of Fe^2+ and V^3+ orbitals is proposed.展开更多
Dilute solution behavior of chitosan was studied in formic acid, acetic acid, lactic acid andhydrochloric acid aqueous solution under different pH values. The reduced viscosities, η_(sp)/C,ofchitosan solutions were d...Dilute solution behavior of chitosan was studied in formic acid, acetic acid, lactic acid andhydrochloric acid aqueous solution under different pH values. The reduced viscosities, η_(sp)/C,ofchitosan solutions were dependent on the properties of acid and pH value of solvents. For a givenchitosan concentration, η^(sp)/C decreased with the increase of acid concentration, or decreasing pHof solvent, indicating shielding effect of excessive acid similar to adding salt into solution. Thestabilities of dilute chitosan solution in formic acid and lactic acid were better than that in acetic acid and hvdrochloric acid.展开更多
Tensile and hardness values for 7075-T651 aluminum alloy in the as welded and post weld heat treated conditions(solubilization and artificial aging-T6),obtained using GMAW and modified indirect electric arc(MIEA)w...Tensile and hardness values for 7075-T651 aluminum alloy in the as welded and post weld heat treated conditions(solubilization and artificial aging-T6),obtained using GMAW and modified indirect electric arc(MIEA)welding processes are presented.Results showed that the base material along rolling direction exhibited a tensile strength of around 600 MPa and elongation of 11%.For the as welded condition,tensile strength was 260 MPa and elongation percent of 3%.This behavior was attributed to brittleness induced by the microstructural characteristics of the welded alloys,as well as high porosity.Hardness profiles along the welds were obtained and different welded zones were identified.A soft zone(*100 HV0.1) in the heat affected zone for GMAW and MIEA was observed,the minimum hardness corresponding to weld metal(*85 and *96 HV0.1for GMAW and MIEA,respectively).The high dilution between filler and base metal during welding in MIEA allows to the Zn and Cu to flow from the base metal into the weld metal,inducing hardening by solution and subsequent artificial aging.In this regard,the hardness of the weld metal for MIEA increases by 56%,while the tensile strength reaches a value close to 400 MPa.For GMAW,non-favorable hardening effect was observed for the weld metal after solution and artificial aging.展开更多
基金Supported by the National Basic Research Program of China under Grant Nos 2011CB921904 and 2012CB927402the National Natural Science Foundation of China under Grant Nos 11074142 and 11021464+1 种基金the Key Project of Chinese Ministry of Education under Grant No 309003the Tsinghua TNList Cross-discipline Foundation
文摘Structural and magnetic properties are investigated for Fe1-xMnxV2O4 (0≤ x ≤ 1) spinels. As orbital-active Fe^2+ is substituted with Mn^2+, the cubie-to-tetragonM transition TsI and the tetragonal-to-orthorhombic transition Ts2 gradually decrease. These structural transitions originate from the Fe^2+ ferro-orbital order (F-OO). Below Yafet-Kittel (YK) magnetic transition TN2, V^3+ orbital order (V-OO) plays an important role on global structure. Here x = 0.6 is a critical point. Fe^2+ F-OO and V^3+ F-OO coexist for 0 ≤ x ≤ 0.5. For x≥ 0.6, the orbital pattern of V^3+ is antiferro (AF)-00, and Fe^2+ F-OO disappears. Structural transition Ts3, accompanied by YK magnetic transition TN2, decreases initially, and then increases at x = 0.6. A scenario for the complex phase diagram arising from the cooperation or competition of Fe^2+ and V^3+ orbitals is proposed.
基金The project is supported by the National Natural Science Foundation of China
文摘Dilute solution behavior of chitosan was studied in formic acid, acetic acid, lactic acid andhydrochloric acid aqueous solution under different pH values. The reduced viscosities, η_(sp)/C,ofchitosan solutions were dependent on the properties of acid and pH value of solvents. For a givenchitosan concentration, η^(sp)/C decreased with the increase of acid concentration, or decreasing pHof solvent, indicating shielding effect of excessive acid similar to adding salt into solution. Thestabilities of dilute chitosan solution in formic acid and lactic acid were better than that in acetic acid and hvdrochloric acid.
文摘Tensile and hardness values for 7075-T651 aluminum alloy in the as welded and post weld heat treated conditions(solubilization and artificial aging-T6),obtained using GMAW and modified indirect electric arc(MIEA)welding processes are presented.Results showed that the base material along rolling direction exhibited a tensile strength of around 600 MPa and elongation of 11%.For the as welded condition,tensile strength was 260 MPa and elongation percent of 3%.This behavior was attributed to brittleness induced by the microstructural characteristics of the welded alloys,as well as high porosity.Hardness profiles along the welds were obtained and different welded zones were identified.A soft zone(*100 HV0.1) in the heat affected zone for GMAW and MIEA was observed,the minimum hardness corresponding to weld metal(*85 and *96 HV0.1for GMAW and MIEA,respectively).The high dilution between filler and base metal during welding in MIEA allows to the Zn and Cu to flow from the base metal into the weld metal,inducing hardening by solution and subsequent artificial aging.In this regard,the hardness of the weld metal for MIEA increases by 56%,while the tensile strength reaches a value close to 400 MPa.For GMAW,non-favorable hardening effect was observed for the weld metal after solution and artificial aging.