We have successfully developed cryogen-free dilution refrigerators with medium cooling power that can be applied to quantum experiments. Breakthroughs have been made in some key technologies and components of heat swi...We have successfully developed cryogen-free dilution refrigerators with medium cooling power that can be applied to quantum experiments. Breakthroughs have been made in some key technologies and components of heat switches and dilution units. Our prototype has been running continuously and stably for more than 100 hours below 10 m K, with a minimum temperature of 7.6 m K and a cooling power of 450 μW at 100 m K. At the same time, we have also made progress in the application of dilution refrigerators, such as quantum computing, low-temperature detector, and magnet integration. These indicators and test results indicate good prospects for application in physics, astronomy, and quantum information.展开更多
With thermal fluctuation strongly suppressed,low temperature environment is essential for studies of condensed matter physics and developments of quantum technologies.Ultra-low temperature below 20 m K has demonstrate...With thermal fluctuation strongly suppressed,low temperature environment is essential for studies of condensed matter physics and developments of quantum technologies.Ultra-low temperature below 20 m K has demonstrated its importance and significance in physical sciences and information techniques.Dilution refrigeration is by far the best feasible and reliable method to generate and keep lattice temperature in this range.With a potential shortage of helium supply,cryogen-free dilution refrigerator(CFDR),eliminating the necessity of regular helium refill,becomes the main facility for the purpose of creating ultralow temperature environments.Here we describe our successful construction of a CFDR which reached a base temperature of around 10.9 m K for continuous circulation and 8.6 m K for single-shot operation.We describe its operating mechanism and the designs of key components,especially some unique designs including heat switch and alumina thermal link.Possible improvements in the future are also discussed.展开更多
基金supported by the Beijing Commission of Science and Technology(Grant No.Z211100004021012)Special Research Assistant Program of the Chinese Academy of Sciences(Grant No.E3VP021RX4)。
文摘We have successfully developed cryogen-free dilution refrigerators with medium cooling power that can be applied to quantum experiments. Breakthroughs have been made in some key technologies and components of heat switches and dilution units. Our prototype has been running continuously and stably for more than 100 hours below 10 m K, with a minimum temperature of 7.6 m K and a cooling power of 450 μW at 100 m K. At the same time, we have also made progress in the application of dilution refrigerators, such as quantum computing, low-temperature detector, and magnet integration. These indicators and test results indicate good prospects for application in physics, astronomy, and quantum information.
基金supported by Key Research Program of Frontier Sciences,CAS(Grant No.ZDBS-LY-SLH0010)Beijing Natural Science Foundation(Grant No.JQ21002)Beijing Council of Science and Technology(Grant Nos.Z201100008420006 and Z211100004021012)
文摘With thermal fluctuation strongly suppressed,low temperature environment is essential for studies of condensed matter physics and developments of quantum technologies.Ultra-low temperature below 20 m K has demonstrated its importance and significance in physical sciences and information techniques.Dilution refrigeration is by far the best feasible and reliable method to generate and keep lattice temperature in this range.With a potential shortage of helium supply,cryogen-free dilution refrigerator(CFDR),eliminating the necessity of regular helium refill,becomes the main facility for the purpose of creating ultralow temperature environments.Here we describe our successful construction of a CFDR which reached a base temperature of around 10.9 m K for continuous circulation and 8.6 m K for single-shot operation.We describe its operating mechanism and the designs of key components,especially some unique designs including heat switch and alumina thermal link.Possible improvements in the future are also discussed.