This paper focuses on a concept of using dimensionless variables as input and output to Artificial Neural Network (ANN) and discusses the improvement in the results in terms of various performance criteria as well as ...This paper focuses on a concept of using dimensionless variables as input and output to Artificial Neural Network (ANN) and discusses the improvement in the results in terms of various performance criteria as well as simplification of ANN structure for modeling rainfall-runoff process in certain Indian catchments. In the present work, runoff is taken as the response (output) variable while rainfall, slope, area of catchment and forest cover are taken as input parameters. The data used in this study are taken from six drainage basins in the Indian provinces of Madhya Pradesh, Bihar, Rajasthan, West Bengal and Tamil Nadu, located in the different hydro-climatic zones. A standard statistical performance evaluation measures such as root mean square (RMSE), Nash–Sutcliffe efficiency and Correlation coefficient were employed to evaluate the performances of various models developed. The results obtained in this study indicate that ANN model using dimensionless variables were able to provide a better representation of rainfall–runoff process in comparison with the ANN models using process variables investigated in this study.展开更多
The simulation of salinity at different locations of a tidal river using physically-based hydrodynamic models is quite cumbersome because it requires many types of data, such as hydrological and hydraulic time series ...The simulation of salinity at different locations of a tidal river using physically-based hydrodynamic models is quite cumbersome because it requires many types of data, such as hydrological and hydraulic time series at boundaries, river geometry, and adjusted coefficients. Therefore, an artificial neural network (ANN) technique using a back-propagation neural network (BPNN) and a radial basis function neural network (RBFNN) is adopted as an effective alternative in salinity simulation studies. The present study focuses on comparing the performance of BPNN, RBFNN, and three-dimensional hydrodynamic models as applied to a tidal estuarine system. The observed salinity data sets collected from 18 to 22 May, 16 to 22 October, and 26 to 30 October 2002 (totaling 4320 data points) were used for BPNN and RBFNN model training and for hydrodynamic model calibration. The data sets collected from 30 May to 2 June and 11 to 15 November 2002 (totaling 2592 data points) were adopted for BPNN and RBFNN model verification and for hydrodynamic model verification. The results revealed that the ANN (BPNN and RBFNN) models were capable of predicting the nonlinear time series behavior of salinity to the multiple forcing signals of water stages at different stations and freshwater input at upstream boundaries. The salinity predicted by the ANN models was better than that predicted by the physically based hydrodynamic model. This study suggests that BPNN and RBFNN models are easy-to-use modeling tools for simulating the salinity variation in a tidal estuarine system.展开更多
The objectification of the pulse signal analysis is a practical problem. The classification of the pulse signal is studied based on the BP neural network. It is first analyzed how to select the characteristic factors ...The objectification of the pulse signal analysis is a practical problem. The classification of the pulse signal is studied based on the BP neural network. It is first analyzed how to select the characteristic factors of the pulse signal. Then the method of nondimensionalization/normalization on the pulse signal is presented to preprocess the characteristic factors. The classification of the pulse signal and the effects of the selection of characteristic factors are studied by using the normalized data and BP neural network. It is shown that nondimensionalization/normalization of the data is in favor of the training and forecasting of the network. The selection of characteristic factors affects the accuracy of forecasting obviously. The results of forecasting by selection of 8, 6 and 4 factors respectively show that the less the factors are, the worse the effects are.展开更多
<div style="text-align:justify;"> Load identification method is one of the major technical difficulties of non-intrusive composite monitoring. Binary V-I trajectory image can reflect the original V-I t...<div style="text-align:justify;"> Load identification method is one of the major technical difficulties of non-intrusive composite monitoring. Binary V-I trajectory image can reflect the original V-I trajectory characteristics to a large extent, so it is widely used in load identification. However, using single binary V-I trajectory feature for load identification has certain limitations. In order to improve the accuracy of load identification, the power feature is added on the basis of the binary V-I trajectory feature in this paper. We change the initial binary V-I trajectory into a new 3D feature by mapping the power feature to the third dimension. In order to reduce the impact of imbalance samples on load identification, the SVM SMOTE algorithm is used to balance the samples. Based on the deep learning method, the convolutional neural network model is used to extract the newly produced 3D feature to achieve load identification in this paper. The results indicate the new 3D feature has better observability and the proposed model has higher identification performance compared with other classification models on the public data set PLAID. </div>展开更多
Predicting the direction of the stock market has always been a huge challenge.Also,the way of forecasting the stock market reduces the risk in the financial market,thus ensuring that brokers can make normal returns.De...Predicting the direction of the stock market has always been a huge challenge.Also,the way of forecasting the stock market reduces the risk in the financial market,thus ensuring that brokers can make normal returns.Despite the complexities of the stock market,the challenge has been increasingly addressed by experts in a variety of disciplines,including economics,statistics,and computer science.The introduction of machine learning,in-depth understanding of the prospects of the financial market,thus doing many experiments to predict the future so that the stock price trend has different degrees of success.In this paper,we propose a method to predict stocks from different industries and markets,as well as trend prediction using traditional machine learning algorithms such as linear regression,polynomial regression and learning techniques in time series prediction using two forms of special types of recursive neural networks:long and short time memory(LSTM)and spoken short-term memory.展开更多
为提高非视距场景下超宽带(ultra‑wideband,UWB)定位精度,本文提出一种基于误差因子的改进加权最小二乘(weighted least square,WLS)算法.该算法利用测距值和实时信道冲激响应特征训练1维卷积神经网络,实现误差因子的准确预测;基于预测...为提高非视距场景下超宽带(ultra‑wideband,UWB)定位精度,本文提出一种基于误差因子的改进加权最小二乘(weighted least square,WLS)算法.该算法利用测距值和实时信道冲激响应特征训练1维卷积神经网络,实现误差因子的准确预测;基于预测得到的误差因子设计改进WLS算法的加权矩阵,赋予不同基站合理的权重,以改善非视距场景下UWB定位性能.通过实测采集静态和动态定位数据对改进WLS算法进行性能验证.实验结果表明:视距场景下,改进WLS算法与最小二乘(least square,LS)算法、WLS算法定位性能相近;非视距场景下,改进WLS算法明显优于LS算法、WLS算法,能够有效抑制非视距误差.展开更多
文摘This paper focuses on a concept of using dimensionless variables as input and output to Artificial Neural Network (ANN) and discusses the improvement in the results in terms of various performance criteria as well as simplification of ANN structure for modeling rainfall-runoff process in certain Indian catchments. In the present work, runoff is taken as the response (output) variable while rainfall, slope, area of catchment and forest cover are taken as input parameters. The data used in this study are taken from six drainage basins in the Indian provinces of Madhya Pradesh, Bihar, Rajasthan, West Bengal and Tamil Nadu, located in the different hydro-climatic zones. A standard statistical performance evaluation measures such as root mean square (RMSE), Nash–Sutcliffe efficiency and Correlation coefficient were employed to evaluate the performances of various models developed. The results obtained in this study indicate that ANN model using dimensionless variables were able to provide a better representation of rainfall–runoff process in comparison with the ANN models using process variables investigated in this study.
文摘The simulation of salinity at different locations of a tidal river using physically-based hydrodynamic models is quite cumbersome because it requires many types of data, such as hydrological and hydraulic time series at boundaries, river geometry, and adjusted coefficients. Therefore, an artificial neural network (ANN) technique using a back-propagation neural network (BPNN) and a radial basis function neural network (RBFNN) is adopted as an effective alternative in salinity simulation studies. The present study focuses on comparing the performance of BPNN, RBFNN, and three-dimensional hydrodynamic models as applied to a tidal estuarine system. The observed salinity data sets collected from 18 to 22 May, 16 to 22 October, and 26 to 30 October 2002 (totaling 4320 data points) were used for BPNN and RBFNN model training and for hydrodynamic model calibration. The data sets collected from 30 May to 2 June and 11 to 15 November 2002 (totaling 2592 data points) were adopted for BPNN and RBFNN model verification and for hydrodynamic model verification. The results revealed that the ANN (BPNN and RBFNN) models were capable of predicting the nonlinear time series behavior of salinity to the multiple forcing signals of water stages at different stations and freshwater input at upstream boundaries. The salinity predicted by the ANN models was better than that predicted by the physically based hydrodynamic model. This study suggests that BPNN and RBFNN models are easy-to-use modeling tools for simulating the salinity variation in a tidal estuarine system.
文摘The objectification of the pulse signal analysis is a practical problem. The classification of the pulse signal is studied based on the BP neural network. It is first analyzed how to select the characteristic factors of the pulse signal. Then the method of nondimensionalization/normalization on the pulse signal is presented to preprocess the characteristic factors. The classification of the pulse signal and the effects of the selection of characteristic factors are studied by using the normalized data and BP neural network. It is shown that nondimensionalization/normalization of the data is in favor of the training and forecasting of the network. The selection of characteristic factors affects the accuracy of forecasting obviously. The results of forecasting by selection of 8, 6 and 4 factors respectively show that the less the factors are, the worse the effects are.
文摘<div style="text-align:justify;"> Load identification method is one of the major technical difficulties of non-intrusive composite monitoring. Binary V-I trajectory image can reflect the original V-I trajectory characteristics to a large extent, so it is widely used in load identification. However, using single binary V-I trajectory feature for load identification has certain limitations. In order to improve the accuracy of load identification, the power feature is added on the basis of the binary V-I trajectory feature in this paper. We change the initial binary V-I trajectory into a new 3D feature by mapping the power feature to the third dimension. In order to reduce the impact of imbalance samples on load identification, the SVM SMOTE algorithm is used to balance the samples. Based on the deep learning method, the convolutional neural network model is used to extract the newly produced 3D feature to achieve load identification in this paper. The results indicate the new 3D feature has better observability and the proposed model has higher identification performance compared with other classification models on the public data set PLAID. </div>
文摘Predicting the direction of the stock market has always been a huge challenge.Also,the way of forecasting the stock market reduces the risk in the financial market,thus ensuring that brokers can make normal returns.Despite the complexities of the stock market,the challenge has been increasingly addressed by experts in a variety of disciplines,including economics,statistics,and computer science.The introduction of machine learning,in-depth understanding of the prospects of the financial market,thus doing many experiments to predict the future so that the stock price trend has different degrees of success.In this paper,we propose a method to predict stocks from different industries and markets,as well as trend prediction using traditional machine learning algorithms such as linear regression,polynomial regression and learning techniques in time series prediction using two forms of special types of recursive neural networks:long and short time memory(LSTM)and spoken short-term memory.
文摘为提高非视距场景下超宽带(ultra‑wideband,UWB)定位精度,本文提出一种基于误差因子的改进加权最小二乘(weighted least square,WLS)算法.该算法利用测距值和实时信道冲激响应特征训练1维卷积神经网络,实现误差因子的准确预测;基于预测得到的误差因子设计改进WLS算法的加权矩阵,赋予不同基站合理的权重,以改善非视距场景下UWB定位性能.通过实测采集静态和动态定位数据对改进WLS算法进行性能验证.实验结果表明:视距场景下,改进WLS算法与最小二乘(least square,LS)算法、WLS算法定位性能相近;非视距场景下,改进WLS算法明显优于LS算法、WLS算法,能够有效抑制非视距误差.