期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
A Dimension-Splitting Variational Multiscale Element-Free Galerkin Method for Three-Dimensional Singularly Perturbed Convection-Diffusion Problems 被引量:1
1
作者 Jufeng Wang Yong Wu +1 位作者 Ying Xu Fengxin Sun 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期341-356,共16页
By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is propose... By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is proposed for three-dimensional(3D)singular perturbed convection-diffusion(SPCD)problems.In the DSVMIEFG method,the 3D problem is decomposed into a series of 2D problems by the DS method,and the discrete equations on the 2D splitting surface are obtained by the VMIEFG method.The improved interpolation-type moving least squares(IIMLS)method is used to construct shape functions in the weak form and to combine 2D discrete equations into a global system of discrete equations for the three-dimensional SPCD problems.The solved numerical example verifies the effectiveness of the method in this paper for the 3D SPCD problems.The numerical solution will gradually converge to the analytical solution with the increase in the number of nodes.For extremely small singular diffusion coefficients,the numerical solution will avoid numerical oscillation and has high computational stability. 展开更多
关键词 dimension-splitting multiscale interpolating element-free galerkin(DS-VMIEFG)method interpolating variational multiscale element-free galerkin(VMIEFG)method dimension splitting method singularly perturbed convection-diffusion problems
下载PDF
The dimension split element-free Galerkin method for three-dimensional potential problems 被引量:4
2
作者 Z.J.Meng H.Cheng +1 位作者 L.D.Ma Y.M.Cheng 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第3期462-474,共13页
This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-d... This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method. 展开更多
关键词 dimension split method Improved moving least-squares (IMLS) approximation Improved element-free galerkin (IEFG) method Finite difference method (FDM) dimension split element-free galerkin dsefg method Potential problem
下载PDF
A Fast Element-Free Galerkin Method for 3D Elasticity Problems
3
作者 Zhijuan Meng Yanan Fang Yumin Cheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第7期55-79,共25页
In this paper,a fast element-free Galerkin(FEFG)method for three-dimensional(3D)elasticity problems is established.The FEFG method is a combination of the improved element-free Galerkin(IEFG)method and the dimension s... In this paper,a fast element-free Galerkin(FEFG)method for three-dimensional(3D)elasticity problems is established.The FEFG method is a combination of the improved element-free Galerkin(IEFG)method and the dimension splitting method(DSM).By using the DSM,a 3D problem is converted to a series of 2D ones,and the IEFG method with a weighted orthogonal function as the basis function and the cubic spline function as the weight function is applied to simulate these 2D problems.The essential boundary conditions are treated by the penalty method.The splitting direction uses the finite difference method(FDM),which can combine these 2D problems into a discrete system.Finally,the system equation of the 3D elasticity problem is obtained.Some specific numerical problems are provided to illustrate the effectiveness and advantages of the FEFG method for 3D elasticity by comparing the results of the FEFG method with those of the IEFG method.The convergence and relative error norm of the FEFG method for elasticity are also studied. 展开更多
关键词 Improved element-free galerkin method dimension splitting method finite difference method fast element-free galerkin method ELASTICITY
下载PDF
The dimension splitting element-free Galerkin method for 3D transient heat conduction problems 被引量:8
4
作者 ZhiJuan Meng Heng Cheng +1 位作者 LiDong Ma YuMin Cheng 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2019年第4期45-56,共12页
By transforming a 3D problem into some related 2D problems, the dimension splitting element-free Galerkin(DSEFG) method is proposed to solve 3D transient heat conduction problems. The improved element-free Galerkin(IE... By transforming a 3D problem into some related 2D problems, the dimension splitting element-free Galerkin(DSEFG) method is proposed to solve 3D transient heat conduction problems. The improved element-free Galerkin(IEFG) method is used for 2D transient heat conduction problems, and the finite difference method is applied in the splitting direction. The discretized system equation is obtained based on the Galerkin weak form of 2D problem; the essential boundary conditions are imposed with the penalty method; and the finite difference method is employed in the time domain. Four exemplary problems are chosen to verify the efficiency of the DSEFG method. The numerical solutions show that the efficiency and precision of the DSEFG method are greater than ones of the IEFG method for 3D problems. 展开更多
关键词 improved element-free galerkin (IEFG) method dimension splitting method finite DIFFERENCE method dimension splitting element-free galerkin (dsefg) method TRANSIENT heat conduction problem
原文传递
三维瞬态对流扩散问题的插值型维数分裂无单元Galerkin方法
5
作者 成毓俊 彭妙娟 程玉民 《计算机辅助工程》 2024年第4期55-61,68,共8页
提出一种求解三维瞬态对流扩散问题的插值型维数分裂无单元Galerkin(IDSEFG)方法。首先采用维数分裂法将该三维问题的空间域离散化处理得到一系列二维问题,使用插值型无单元Galerkin方法建立这些二维问题的离散系统方程,然后在维数分裂... 提出一种求解三维瞬态对流扩散问题的插值型维数分裂无单元Galerkin(IDSEFG)方法。首先采用维数分裂法将该三维问题的空间域离散化处理得到一系列二维问题,使用插值型无单元Galerkin方法建立这些二维问题的离散系统方程,然后在维数分裂方向上利用有限差分法耦合这组离散方程,同时利用有限差分法离散时间域,最终得到此问题的IDSEFG方法计算公式。结合2个算例,讨论不同参数影响下的计算精度和效率。结果表明:IDSEFG方法在计算精度和速度上比改进的无单元Galerkin(IEFG)方法具有较大优势。 展开更多
关键词 无网格方法 改进的移动最小二乘插值法 维数分裂 插值型维数分裂无单元galerkin方法 改进的无单元galerkin方法 瞬态对流扩散
下载PDF
三维弹性力学改进的插值型维数分裂无单元Galerkin方法权函数研究
6
作者 孟智娟 房亚楠 迟晓菲 《西南民族大学学报(自然科学版)》 CAS 2022年第5期569-577,共9页
三维弹性力学改进的插值型维数分裂无单元Galerkin方法的关键是将三维问题转化为二维问题.二维问题采用改进的插值型无单元Galerkin法进行求解,分裂方向上采用有限差分法.在构造形函数时,权函数对其具有较大影响.研究三次样条函数、四... 三维弹性力学改进的插值型维数分裂无单元Galerkin方法的关键是将三维问题转化为二维问题.二维问题采用改进的插值型无单元Galerkin法进行求解,分裂方向上采用有限差分法.在构造形函数时,权函数对其具有较大影响.研究三次样条函数、四次样条函数、指数函数和正定紧支径向基函数为权函数时,三维弹性力学改进的插值型维数分裂无单元Galerkin方法数值计算结果的计算精度和计算效率.并与改进的无单元Galerkin方法计算结果进行比较,说明该方法的优越性及权函数的重要性. 展开更多
关键词 改进的插值型维数分裂无单元galerkin方法 维数分裂法 改进的插值型无单元galerkin方法 权函数 弹性力学
下载PDF
势问题维数分裂无单元Galerkin法影响因子的研究
7
作者 李艳芳 孟智娟 +1 位作者 李兴国 任红萍 《太原科技大学学报》 2022年第3期270-276,共7页
给出三维势问题的分维过程,然后对维数分裂无单元Galerkin方法(DSEFG)进行了介绍,说明了该方法是通过降维处理,以达到简化问题的目的。通过具体的数值算例,研究了节点分布和影响域参数d_(max)这两个影响因子对计算精度和效率的影响,从... 给出三维势问题的分维过程,然后对维数分裂无单元Galerkin方法(DSEFG)进行了介绍,说明了该方法是通过降维处理,以达到简化问题的目的。通过具体的数值算例,研究了节点分布和影响域参数d_(max)这两个影响因子对计算精度和效率的影响,从而选择出最优的节点分布和d_(max)的最优取值。 展开更多
关键词 维数分裂无单元galerkin方法 试函数 影响因子 相对误差
下载PDF
维数分裂无单元Galerkin方法中权函数的研究
8
作者 刘卫桃 孟智娟 +1 位作者 李兴国 任红萍 《太原科技大学学报》 2022年第3期264-269,276,共7页
在三维势问题分维处理的基础上,介绍了三维势问题的维数分裂无单元Galerkin方法(DSEFG),对该方法形函数中的权函数进行了研究。通过数值算例,分析了权函数的类型、函数中的参数对计算精度和计算效率的影响,并得出了最优的权函数以及权... 在三维势问题分维处理的基础上,介绍了三维势问题的维数分裂无单元Galerkin方法(DSEFG),对该方法形函数中的权函数进行了研究。通过数值算例,分析了权函数的类型、函数中的参数对计算精度和计算效率的影响,并得出了最优的权函数以及权函数中参数的选取。 展开更多
关键词 维数分裂无单元galerkin方法 三维势问题 权函数 形函数
下载PDF
求解三维弹性力学问题的快速耦合方法
9
作者 程珩 梁冬琼 +2 位作者 刘燕 彭飘飘 程玉民 《力学季刊》 CAS CSCD 北大核心 2023年第4期793-802,共10页
将多种数值方法耦合,充分利用各种方法的优点建立新的数值方法,是求解三维复杂问题的有效途径之一.本文将无单元Galerkin(Element-Free Galerkin,EFG)方法、有限元法和维数分裂法耦合,提出了求解三维弹性力学问题的快速耦合方法(Fast Hy... 将多种数值方法耦合,充分利用各种方法的优点建立新的数值方法,是求解三维复杂问题的有效途径之一.本文将无单元Galerkin(Element-Free Galerkin,EFG)方法、有限元法和维数分裂法耦合,提出了求解三维弹性力学问题的快速耦合方法(Fast Hybrid Method,FHM).将三维弹性力学问题分裂为若干个二维平面问题,对于每个二维问题采用罚函数法施加边界条件,并推导其相应的积分弱形式,引入Shepard基函数的移动最小二乘法建立形函数,进而推导二维平面问题的离散方程.第三个方向上采用有限元法将这些二维离散方程进行耦合,可以得到原三维弹性力学问题的快速耦合方法数值解的求解公式.通过数值算例验证了本文快速耦合方法求解三维弹性力学问题的收敛性,将数值解与解析解对比,说明了本文方法求解三维弹性力学问题的有效性. 展开更多
关键词 无单元galerkin方法 Shepard基函数 维数分裂法 有限元法 弹性力学
下载PDF
权函数对插值型维数分裂无网格方法的影响
10
作者 马玉叶 迟晓菲 孟智娟 《太原科技大学学报》 2024年第6期628-632,共5页
以三维势问题为例,研究权函数对三维势问题改进的插值型维数分裂无单元Galerkin方法的影响。选取不同的权函数构造不同的近似函数。为了证明权函数的选取对该方法的优越性,选取两个实例,用该方法进行求解,与传统的无单元Galerkin方法相... 以三维势问题为例,研究权函数对三维势问题改进的插值型维数分裂无单元Galerkin方法的影响。选取不同的权函数构造不同的近似函数。为了证明权函数的选取对该方法的优越性,选取两个实例,用该方法进行求解,与传统的无单元Galerkin方法相比较,计算结果的对比分析表明,该方法有效地提高了计算速度和计算精度。 展开更多
关键词 非奇异权函数的移动最小二乘插值法 有限差分法 权函数 改进的插值型维数分裂无单元galerkin方法 势问题
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部