期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A Dimension-Splitting Variational Multiscale Element-Free Galerkin Method for Three-Dimensional Singularly Perturbed Convection-Diffusion Problems 被引量:1
1
作者 Jufeng Wang Yong Wu +1 位作者 Ying Xu Fengxin Sun 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期341-356,共16页
By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is propose... By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is proposed for three-dimensional(3D)singular perturbed convection-diffusion(SPCD)problems.In the DSVMIEFG method,the 3D problem is decomposed into a series of 2D problems by the DS method,and the discrete equations on the 2D splitting surface are obtained by the VMIEFG method.The improved interpolation-type moving least squares(IIMLS)method is used to construct shape functions in the weak form and to combine 2D discrete equations into a global system of discrete equations for the three-dimensional SPCD problems.The solved numerical example verifies the effectiveness of the method in this paper for the 3D SPCD problems.The numerical solution will gradually converge to the analytical solution with the increase in the number of nodes.For extremely small singular diffusion coefficients,the numerical solution will avoid numerical oscillation and has high computational stability. 展开更多
关键词 dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method interpolating variational multiscale element-free Galerkin(VMIEFG)method dimension splitting method singularly perturbed convection-diffusion problems
下载PDF
Dimension Splitting Method for the Three Dimensional Rotating Navier-Stokes Equations 被引量:2
2
作者 Kai-tai LI Jia-ping YU +1 位作者 Feng SHI Ai-xiang HUAN 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2012年第3期417-442,共26页
In this paper, we propose a dimensional splitting method for the three dimensional (3D) rotating Navier-Stokes equations. Assume that the domain is a channel bounded by two surfaces and is decomposed by a series of... In this paper, we propose a dimensional splitting method for the three dimensional (3D) rotating Navier-Stokes equations. Assume that the domain is a channel bounded by two surfaces and is decomposed by a series of surfaces i into several sub-domains, which are called the layers of the flow. Every interface i between two sub-domains shares the same geometry. After establishing a semi-geodesic coordinate (S-coordinate) system based on i, Navier-Stoke equations in this coordinate can be expressed as the sum of two operators, of which one is called the membrane operator defined on the tangent space on i, another one is called the bending operator taking value in the normal space on i. Then the derivatives of velocity with respect to the normal direction of the surface are approximated by the Euler central difference, and an approximate form of Navier-Stokes equations on the surface i is obtained, which is called the two-dimensional three-component (2D-3C) Navier-Stokes equations on a two dimensional manifold. Solving these equations by alternate iteration, an approximate solution to the original 3D Navier-Stokes equations is obtained. In addition, the proof of the existence of solutions to 2D-3C Navier-Stokes equations is provided, and some approximate methods for solving 2D-3C Navier-Stot4es equations are presented. 展开更多
关键词 stream layer 2D manifold Navier-Stokes equations dimension splitting method finite elementmethod
原文传递
The dimension split element-free Galerkin method for three-dimensional potential problems 被引量:2
3
作者 Z.J.Meng H.Cheng +1 位作者 L.D.Ma Y.M.Cheng 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第3期462-474,共13页
This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-d... This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method. 展开更多
关键词 dimension split method Improved moving least-squares (IMLS) approximation Improved element-free Galerkin (IEFG) method Finite difference method (FDM) dimension split element-free Galerkin (DSEFG) method Potential problem
下载PDF
A Fast Element-Free Galerkin Method for 3D Elasticity Problems
4
作者 Zhijuan Meng Yanan Fang Yumin Cheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第7期55-79,共25页
In this paper,a fast element-free Galerkin(FEFG)method for three-dimensional(3D)elasticity problems is established.The FEFG method is a combination of the improved element-free Galerkin(IEFG)method and the dimension s... In this paper,a fast element-free Galerkin(FEFG)method for three-dimensional(3D)elasticity problems is established.The FEFG method is a combination of the improved element-free Galerkin(IEFG)method and the dimension splitting method(DSM).By using the DSM,a 3D problem is converted to a series of 2D ones,and the IEFG method with a weighted orthogonal function as the basis function and the cubic spline function as the weight function is applied to simulate these 2D problems.The essential boundary conditions are treated by the penalty method.The splitting direction uses the finite difference method(FDM),which can combine these 2D problems into a discrete system.Finally,the system equation of the 3D elasticity problem is obtained.Some specific numerical problems are provided to illustrate the effectiveness and advantages of the FEFG method for 3D elasticity by comparing the results of the FEFG method with those of the IEFG method.The convergence and relative error norm of the FEFG method for elasticity are also studied. 展开更多
关键词 Improved element-free Galerkin method dimension splitting method finite difference method fast element-free Galerkin method ELASTICITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部