As an effective way in finding the underlying parameters of a high-dimension space, manifold learning is popular in nonlinear dimensionality reduction which makes high-dimensional data easily to be observed and analyz...As an effective way in finding the underlying parameters of a high-dimension space, manifold learning is popular in nonlinear dimensionality reduction which makes high-dimensional data easily to be observed and analyzed. In this paper, Isomap, one of the most famous manifold learning algorithms, is applied to process closing prices of stocks of CSI 300 index from September 2009 to October 2011. Results indicate that Isomap algorithm not only reduces dimensionality of stock data successfully, but also classifies most stocks according to their trends efficiently.展开更多
针对二维下料问题板材单一的特点,研究了多规格板材二维下料问题。板材规格多样、毛坯规格多样且数量庞大,是NP(Non-deterministic Polynomial)完全问题。针对该问题的特点,将下料过程设计成规整和非规整两个阶段。规整阶段完成每种矩...针对二维下料问题板材单一的特点,研究了多规格板材二维下料问题。板材规格多样、毛坯规格多样且数量庞大,是NP(Non-deterministic Polynomial)完全问题。针对该问题的特点,将下料过程设计成规整和非规整两个阶段。规整阶段完成每种矩形毛坯的主体下料任务之后,如仍有毛坯剩余,则进入非规整阶段采用BL算法(Bottom Left Algorithm)下料剩余毛坯。根据模型特点,提出变邻域人工蜂群算法(VNABC),设计两种解码策略STD和SLD,并改进了VNABC算法的操作算子。最后,采用响应面分析法对VNABC算法进行参数标定。通过仿真实验将VNABC算法与遗传算法(GA)、改进粒子群优化算法(NUS)、模拟退火算法(SA)、人工蜂群算法(ABC)进行了对比分析,实验结果验证了VNABC解决多规格板材二维下料问题的优越性。展开更多
文摘As an effective way in finding the underlying parameters of a high-dimension space, manifold learning is popular in nonlinear dimensionality reduction which makes high-dimensional data easily to be observed and analyzed. In this paper, Isomap, one of the most famous manifold learning algorithms, is applied to process closing prices of stocks of CSI 300 index from September 2009 to October 2011. Results indicate that Isomap algorithm not only reduces dimensionality of stock data successfully, but also classifies most stocks according to their trends efficiently.
文摘针对二维下料问题板材单一的特点,研究了多规格板材二维下料问题。板材规格多样、毛坯规格多样且数量庞大,是NP(Non-deterministic Polynomial)完全问题。针对该问题的特点,将下料过程设计成规整和非规整两个阶段。规整阶段完成每种矩形毛坯的主体下料任务之后,如仍有毛坯剩余,则进入非规整阶段采用BL算法(Bottom Left Algorithm)下料剩余毛坯。根据模型特点,提出变邻域人工蜂群算法(VNABC),设计两种解码策略STD和SLD,并改进了VNABC算法的操作算子。最后,采用响应面分析法对VNABC算法进行参数标定。通过仿真实验将VNABC算法与遗传算法(GA)、改进粒子群优化算法(NUS)、模拟退火算法(SA)、人工蜂群算法(ABC)进行了对比分析,实验结果验证了VNABC解决多规格板材二维下料问题的优越性。