We study a counterbalanced random walkS_(n)=X_(1)+…+X_(n),which is a discrete time non-Markovian process andX_(n) are given recursively as follows.For n≥2,X_(n) is a new independent sample from some fixed law̸=0 wit...We study a counterbalanced random walkS_(n)=X_(1)+…+X_(n),which is a discrete time non-Markovian process andX_(n) are given recursively as follows.For n≥2,X_(n) is a new independent sample from some fixed law̸=0 with a fixed probability p,andX_(n)=−X_(v(n))with probability 1−p,where v(n)is a uniform random variable on{1;…;n−1}.We apply martingale method to obtain a strong invariance principle forS_(n).展开更多
A new control law is proposed to asymptotically stabilize the chaotic neuron system based on LaSalleinvariant principle.The control technique does not require analytical knowledge of the system dynamics and operateswi...A new control law is proposed to asymptotically stabilize the chaotic neuron system based on LaSalleinvariant principle.The control technique does not require analytical knowledge of the system dynamics and operateswithout an explicit knowledge of the desired steady-state position.The well-known modified Hodgkin-Huxley (MHH)and Hindmarsh-Rose (HR) model neurons are taken as examples to verify the implementation of our method.Simulationresults show the proposed control law is effective.The outcome of this study is significant since it is helpful to understandthe learning process of a human brain towards the information processing,memory and abnormal discharge of the brainneurons.展开更多
Richard Feynman once said, “I think it is safe to say that no one understands Quantum Mechanics”. The well-known article on the Einstein-Podolsky-Rosen (EPR) paradox brought forth further doubts on the interpretatio...Richard Feynman once said, “I think it is safe to say that no one understands Quantum Mechanics”. The well-known article on the Einstein-Podolsky-Rosen (EPR) paradox brought forth further doubts on the interpretation of quantum theory. Einstein’s doubt on quantum theory is a doubleedged sword: experimental verification of quantum theory would contradict the hypothesis that speed of light is finite. It has been almost a century since the creation of quantum theory and special relativity, and the relevant doubts brought forward remain unresolved. We posit that the existence of discontinuity points and quantum wormholes would imply superluminal phenomenon or infinite speed of light, which provides for an important supplement to the invariance principle of the speed of light and superluminal phenomena. This can potentially resolve the inconsistency between special relativity and quantum theory.展开更多
In this paper,we establish an invariance principle for ρ^--mixing random sequences under some moment condition.The result improve and extend the relevant result of Wu(2003).
Galilean invariance is a nonrelativistic principle,which should not be kept as a guid-ing principle in discriminating the interaction potential terms derived from field theory.
A parameter retrieval algorithm based on the causality principle and Kramers-Kronig (KK) relations is employed to calculate the effective parameters of three-dimensional (3D) metamaterials. Using KK relations, the...A parameter retrieval algorithm based on the causality principle and Kramers-Kronig (KK) relations is employed to calculate the effective parameters of three-dimensional (3D) metamaterials. Using KK relations, the branch selecting problem, which is the challenge of effective parameter retrieval method, can be removed. To reveal the validity of the proposed algorithm, the constitutive refractive index of a homogeneous polymide cube is extracted. The result is in excellent agreement with the intrinsic refractive index of the polymide. Finally, the two terahertz metamaterials with 3D structures are designed and their effective parameters are then retrieved using the proposed algorithm. Numerical simulations are performed using the fuiI-wave electromagnetic solver, CST Microwave Studio.展开更多
Successful synthesis of single iron-phthalocyanie (FePc) framework layer on substrate and its transferrable properties open the door for decorating the separately distributed transition metals for exploring the dive...Successful synthesis of single iron-phthalocyanie (FePc) framework layer on substrate and its transferrable properties open the door for decorating the separately distributed transition metals for exploring the diverse properties. We have studied the effects of chemical modification on two-dimensional FePc organometallic framework with density functional theory. For simplicity, the non-metal atoms with variant valence electrons are used as prototypes to estimate the effects &ore chemical modifications with different functional groups. The thermo-stabilities of the non-metal atom decorated complex sheet materials have been estimated by the first-principles constant energy molecular dynamic simulations. Upon the non- metal atom adsorption, the magnetic moment could be changed from 2 ~tB to 0, 1, 2, and 3 ~tB per unit cell for the case of tetra-, penta-, hexa-, and hepta-valent non-metal modifications, respectively, showing interesting promise to tailor its magnetic properties for potential applications.展开更多
In this paper, we obtain the strong comparison principle and Hopf Lemma for locally Lipschitz viscosity solutions to a class of nonlinear degenerate elliptic operators of the form △2ψ + L(x,△ ψ), including the ...In this paper, we obtain the strong comparison principle and Hopf Lemma for locally Lipschitz viscosity solutions to a class of nonlinear degenerate elliptic operators of the form △2ψ + L(x,△ ψ), including the conformal hessian operator.展开更多
Two dimensional Fourier transforrn electronic spectroscopy (2DES) in the visible region enables direct observation of complex dynamics of molecules including quantum coherence in the condensed phase. This review aim...Two dimensional Fourier transforrn electronic spectroscopy (2DES) in the visible region enables direct observation of complex dynamics of molecules including quantum coherence in the condensed phase. This review aims to provide a bridge between the principles and intuitive physical description of 2DES for tutorial purpose. Special emphasis is laid upon how 2DES circumvents the restrictions from both uncertainty principle and the wave-packet collapse during the coherent detection, leading to the successful detection of the coherence in terms of energy difference between the eigenstates showing as the quantum beats; then upon the possible mixing among the pure electronic transition, single-rnode and multi-mode coupled vibronic transition leading to the observed beating phenomena. Finally, recent ad- vances in experimentally distinguishing between the electronic coherence and the vibrational coherence are briefly discussed.展开更多
Considering the uncertainty of the electrical axis for two-dimensional audo-magnetotelluric(AMT) data processing, an AMT inversion method with the Central impedance tensor was presented. First, we present a calculatio...Considering the uncertainty of the electrical axis for two-dimensional audo-magnetotelluric(AMT) data processing, an AMT inversion method with the Central impedance tensor was presented. First, we present a calculation expression of the Central impedance tensor in AMT, which can be considered as the arithmetic mean of TE-polarization mode and TM-polarization mode in the twodimensional geo-electrical model. Second, a least-squares iterative inversion algorithm is established, based on a smoothnessconstrained model, and an improved L-curve method is adopted to determine the best regularization parameters. We then test the above inversion method with synthetic data and field data. The test results show that this two-dimensional AMT inversion scheme for the responses of Central impedance is effective and can reconstruct reasonable two-dimensional subsurface resistivity structures. We conclude that the Central impedance tensor is a useful tool for two-dimensional inversion of AMT data.展开更多
The relations of all generalized variational principles in elasticity are studied by employing the invariance theorem of field theory. The infinitesimal scale transformation in field theory was employed to investigate...The relations of all generalized variational principles in elasticity are studied by employing the invariance theorem of field theory. The infinitesimal scale transformation in field theory was employed to investigate the equivalent theorem. Among the results found particularly interesting are those related to that all generalized variational principles in elasticity are equal to each other. Also studied result is that only two variables are independent in the functional and the stress-strain relation is the variational constraint condition for all generalized variational principles in elasticity. This work has proven again the conclusion of Prof. Chien Wei-zang.展开更多
A form invariance of the relativistic Birkhoffian system is studied, and the conserved quantities of the system are obtained. Under the infinitesimal transformation of groups, the definition and criteria of the form i...A form invariance of the relativistic Birkhoffian system is studied, and the conserved quantities of the system are obtained. Under the infinitesimal transformation of groups, the definition and criteria of the form invariance of the system were given. In view of the invariance of relativistic Pfaff_Birkhoff_ D'Alembert principle under the infinitesimal transformation of groups, the theory of Noether symmetries of the relativistic Birkhoffian system were constructed. The relation between the form invariance and the Noether symmetry is studied, and the results show that the form invariance can also lead to the Noether symmetrical conserved quantity of the relativistic Birkhoffian system under certain conditions.展开更多
This paper investigates an important high-dimensional model in the atmospheric and oceanic dynamics-(3+1)- dimensional nonlinear baroclinic potential vorticity equation by the classical Lie group method. Its symmet...This paper investigates an important high-dimensional model in the atmospheric and oceanic dynamics-(3+1)- dimensional nonlinear baroclinic potential vorticity equation by the classical Lie group method. Its symmetry algebra, symmetry group and group-invariant solutions are analysed. Otherwise, some exact explicit solutions are obtained from the corresponding (2+1)-dimensional equation, the inviscid barotropic nondivergent vorticy equation. To show the properties and characters of these solutions, some plots as well as their possible physical meanings of the atmospheric circulation are given out.展开更多
Ky Fan maximum principle is a well-known observation about traces of certain hermitian matrices. In this note, we derive a powerful extension of this claim. The extension is achieved in three ways. First, traces are r...Ky Fan maximum principle is a well-known observation about traces of certain hermitian matrices. In this note, we derive a powerful extension of this claim. The extension is achieved in three ways. First, traces are replaced with norms of diagonal matrices, and any unitarily invariant norm can be used. Second, hermitian matrices are replaced by normal matrices, so the rule applies to a larger class of matrices. Third, diagonal entries can be replaced with eigenvalues and singular values. It is shown that the new maximum principle is closely related to the problem of approximating one matrix by another matrix of a lower rank.展开更多
The toxicity and degradation of hybrid lead-halide perovskites hinder their extensive applications.It is thus of great importance to explore non-toxic alternative materials with excellent stability and optoelectronic ...The toxicity and degradation of hybrid lead-halide perovskites hinder their extensive applications.It is thus of great importance to explore non-toxic alternative materials with excellent stability and optoelectronic property.We investigate the atomic structures and optoelectronic properties of non-toxic organic tin bromide perovskites(OTBP)with one/zerodimensional(1D/0D)structures by first-principles calculations.The calculated atomic structures show that the 1D/0D OTBPs are stable and the structure of inorganic octahedra in 0D is higher order than that in 1D.Moreover,the origination of exceptional purity emitting light in experiments is explained based on the calculated electronic structure.展开更多
We demonstrate two points: 1) the formalism of quantum mechanics can be understood simply as a structure for the expression of the physical notion that not all observables can have values simultaneously;2) the specifi...We demonstrate two points: 1) the formalism of quantum mechanics can be understood simply as a structure for the expression of the physical notion that not all observables can have values simultaneously;2) the specific uncertainty relations can be derived (rigorously) by combination of the invariance principle with a general uncertainty relation based only on the existence of unspecified pairs of conjugate observables. For this purpose, we present a formulation of quantum mechanics based strictly on the invariance principle and a “weak” statement of the uncertainty principle that asserts only the existence of incompatible (conjugate) observables without specifying which observables are incompatible. We go on to show that the invariance principle can be used to develop the equations of motion of the theory, including the Klein-Gordon and Schrodinger equations.展开更多
The singular hybrid boundary node method (SHBNM) is proposed for solving three-dimensional problems in linear elasticity. The SHBNM represents a coupling between the hybrid displacement variational formulations and ...The singular hybrid boundary node method (SHBNM) is proposed for solving three-dimensional problems in linear elasticity. The SHBNM represents a coupling between the hybrid displacement variational formulations and moving least squares (MLS) approximation. The main idea is to reduce the dimensionality of the former and keep the meshless advantage of the later. The rigid movement method was employed to solve the hyper-singular integrations. The 'boundary layer effect', which is the main drawback of the original Hybrid BNM, was overcome by an adaptive integration scheme. The source points of the fundamental solution were arranged directly on the boundary. Thus the uncertain scale factor taken in the regular hybrid boundary node method (RHBNM) can be avoided. Numerical examples for some 3D elastic problems were given to show the characteristics. The computation results obtained by the present method are in excellent agreement with the analytical solution. The parameters that influence the performance of this method were studied through the numerical examples.展开更多
基金Supported by the National Natural Science Foundation of China(11671373).
文摘We study a counterbalanced random walkS_(n)=X_(1)+…+X_(n),which is a discrete time non-Markovian process andX_(n) are given recursively as follows.For n≥2,X_(n) is a new independent sample from some fixed law̸=0 with a fixed probability p,andX_(n)=−X_(v(n))with probability 1−p,where v(n)is a uniform random variable on{1;…;n−1}.We apply martingale method to obtain a strong invariance principle forS_(n).
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10862001 and 10947011the Construction of Key Laboratories in Universities of Guangxi under Grant No. 200912
文摘A new control law is proposed to asymptotically stabilize the chaotic neuron system based on LaSalleinvariant principle.The control technique does not require analytical knowledge of the system dynamics and operateswithout an explicit knowledge of the desired steady-state position.The well-known modified Hodgkin-Huxley (MHH)and Hindmarsh-Rose (HR) model neurons are taken as examples to verify the implementation of our method.Simulationresults show the proposed control law is effective.The outcome of this study is significant since it is helpful to understandthe learning process of a human brain towards the information processing,memory and abnormal discharge of the brainneurons.
文摘Richard Feynman once said, “I think it is safe to say that no one understands Quantum Mechanics”. The well-known article on the Einstein-Podolsky-Rosen (EPR) paradox brought forth further doubts on the interpretation of quantum theory. Einstein’s doubt on quantum theory is a doubleedged sword: experimental verification of quantum theory would contradict the hypothesis that speed of light is finite. It has been almost a century since the creation of quantum theory and special relativity, and the relevant doubts brought forward remain unresolved. We posit that the existence of discontinuity points and quantum wormholes would imply superluminal phenomenon or infinite speed of light, which provides for an important supplement to the invariance principle of the speed of light and superluminal phenomena. This can potentially resolve the inconsistency between special relativity and quantum theory.
基金Supported by the National Natural Science Foundation of China(10661006) Supported by the New Century Guangxi Ten-hundred-thousand Talents Project(2005214)
文摘In this paper,we establish an invariance principle for ρ^--mixing random sequences under some moment condition.The result improve and extend the relevant result of Wu(2003).
基金The project supported by the NSFC and the fundamental research fund of SSTC
文摘Galilean invariance is a nonrelativistic principle,which should not be kept as a guid-ing principle in discriminating the interaction potential terms derived from field theory.
文摘A parameter retrieval algorithm based on the causality principle and Kramers-Kronig (KK) relations is employed to calculate the effective parameters of three-dimensional (3D) metamaterials. Using KK relations, the branch selecting problem, which is the challenge of effective parameter retrieval method, can be removed. To reveal the validity of the proposed algorithm, the constitutive refractive index of a homogeneous polymide cube is extracted. The result is in excellent agreement with the intrinsic refractive index of the polymide. Finally, the two terahertz metamaterials with 3D structures are designed and their effective parameters are then retrieved using the proposed algorithm. Numerical simulations are performed using the fuiI-wave electromagnetic solver, CST Microwave Studio.
基金Project supported by the Research Fund of Taishan Scholar,China(Grant No.TSHW20101004)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2010AM027)the National Natural Science Foundation of China(Grant No.11074100)
文摘Successful synthesis of single iron-phthalocyanie (FePc) framework layer on substrate and its transferrable properties open the door for decorating the separately distributed transition metals for exploring the diverse properties. We have studied the effects of chemical modification on two-dimensional FePc organometallic framework with density functional theory. For simplicity, the non-metal atoms with variant valence electrons are used as prototypes to estimate the effects &ore chemical modifications with different functional groups. The thermo-stabilities of the non-metal atom decorated complex sheet materials have been estimated by the first-principles constant energy molecular dynamic simulations. Upon the non- metal atom adsorption, the magnetic moment could be changed from 2 ~tB to 0, 1, 2, and 3 ~tB per unit cell for the case of tetra-, penta-, hexa-, and hepta-valent non-metal modifications, respectively, showing interesting promise to tailor its magnetic properties for potential applications.
基金partially supported by NSF grant DMS-1501004partially supported by NSFC(11701027)
文摘In this paper, we obtain the strong comparison principle and Hopf Lemma for locally Lipschitz viscosity solutions to a class of nonlinear degenerate elliptic operators of the form △2ψ + L(x,△ ψ), including the conformal hessian operator.
基金supported by the National Natural Science Foundation of China (No.21227003, No.21433014, No.11721404)
文摘Two dimensional Fourier transforrn electronic spectroscopy (2DES) in the visible region enables direct observation of complex dynamics of molecules including quantum coherence in the condensed phase. This review aims to provide a bridge between the principles and intuitive physical description of 2DES for tutorial purpose. Special emphasis is laid upon how 2DES circumvents the restrictions from both uncertainty principle and the wave-packet collapse during the coherent detection, leading to the successful detection of the coherence in terms of energy difference between the eigenstates showing as the quantum beats; then upon the possible mixing among the pure electronic transition, single-rnode and multi-mode coupled vibronic transition leading to the observed beating phenomena. Finally, recent ad- vances in experimentally distinguishing between the electronic coherence and the vibrational coherence are briefly discussed.
基金supported by National Natural Science Foundation of China (grant 41674080)Higher School Doctor Subject Special Scientific Research Foundation (grant 20110162120064)
文摘Considering the uncertainty of the electrical axis for two-dimensional audo-magnetotelluric(AMT) data processing, an AMT inversion method with the Central impedance tensor was presented. First, we present a calculation expression of the Central impedance tensor in AMT, which can be considered as the arithmetic mean of TE-polarization mode and TM-polarization mode in the twodimensional geo-electrical model. Second, a least-squares iterative inversion algorithm is established, based on a smoothnessconstrained model, and an improved L-curve method is adopted to determine the best regularization parameters. We then test the above inversion method with synthetic data and field data. The test results show that this two-dimensional AMT inversion scheme for the responses of Central impedance is effective and can reconstruct reasonable two-dimensional subsurface resistivity structures. We conclude that the Central impedance tensor is a useful tool for two-dimensional inversion of AMT data.
文摘The relations of all generalized variational principles in elasticity are studied by employing the invariance theorem of field theory. The infinitesimal scale transformation in field theory was employed to investigate the equivalent theorem. Among the results found particularly interesting are those related to that all generalized variational principles in elasticity are equal to each other. Also studied result is that only two variables are independent in the functional and the stress-strain relation is the variational constraint condition for all generalized variational principles in elasticity. This work has proven again the conclusion of Prof. Chien Wei-zang.
文摘A form invariance of the relativistic Birkhoffian system is studied, and the conserved quantities of the system are obtained. Under the infinitesimal transformation of groups, the definition and criteria of the form invariance of the system were given. In view of the invariance of relativistic Pfaff_Birkhoff_ D'Alembert principle under the infinitesimal transformation of groups, the theory of Noether symmetries of the relativistic Birkhoffian system were constructed. The relation between the form invariance and the Noether symmetry is studied, and the results show that the form invariance can also lead to the Noether symmetrical conserved quantity of the relativistic Birkhoffian system under certain conditions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10735030,90718041 and 40975038)Shanghai Leading Academic Discipline Project(Grant No.B412)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT0734)
文摘This paper investigates an important high-dimensional model in the atmospheric and oceanic dynamics-(3+1)- dimensional nonlinear baroclinic potential vorticity equation by the classical Lie group method. Its symmetry algebra, symmetry group and group-invariant solutions are analysed. Otherwise, some exact explicit solutions are obtained from the corresponding (2+1)-dimensional equation, the inviscid barotropic nondivergent vorticy equation. To show the properties and characters of these solutions, some plots as well as their possible physical meanings of the atmospheric circulation are given out.
文摘Ky Fan maximum principle is a well-known observation about traces of certain hermitian matrices. In this note, we derive a powerful extension of this claim. The extension is achieved in three ways. First, traces are replaced with norms of diagonal matrices, and any unitarily invariant norm can be used. Second, hermitian matrices are replaced by normal matrices, so the rule applies to a larger class of matrices. Third, diagonal entries can be replaced with eigenvalues and singular values. It is shown that the new maximum principle is closely related to the problem of approximating one matrix by another matrix of a lower rank.
基金Project supported by the National Natural Science Foundation of China(Grant No.51972102).
文摘The toxicity and degradation of hybrid lead-halide perovskites hinder their extensive applications.It is thus of great importance to explore non-toxic alternative materials with excellent stability and optoelectronic property.We investigate the atomic structures and optoelectronic properties of non-toxic organic tin bromide perovskites(OTBP)with one/zerodimensional(1D/0D)structures by first-principles calculations.The calculated atomic structures show that the 1D/0D OTBPs are stable and the structure of inorganic octahedra in 0D is higher order than that in 1D.Moreover,the origination of exceptional purity emitting light in experiments is explained based on the calculated electronic structure.
文摘We demonstrate two points: 1) the formalism of quantum mechanics can be understood simply as a structure for the expression of the physical notion that not all observables can have values simultaneously;2) the specific uncertainty relations can be derived (rigorously) by combination of the invariance principle with a general uncertainty relation based only on the existence of unspecified pairs of conjugate observables. For this purpose, we present a formulation of quantum mechanics based strictly on the invariance principle and a “weak” statement of the uncertainty principle that asserts only the existence of incompatible (conjugate) observables without specifying which observables are incompatible. We go on to show that the invariance principle can be used to develop the equations of motion of the theory, including the Klein-Gordon and Schrodinger equations.
基金Project supported by the Program of the Key Laboratory of Rock and Soil Mechanics of Chinese Academy of Sciences (No.Z110507)
文摘The singular hybrid boundary node method (SHBNM) is proposed for solving three-dimensional problems in linear elasticity. The SHBNM represents a coupling between the hybrid displacement variational formulations and moving least squares (MLS) approximation. The main idea is to reduce the dimensionality of the former and keep the meshless advantage of the later. The rigid movement method was employed to solve the hyper-singular integrations. The 'boundary layer effect', which is the main drawback of the original Hybrid BNM, was overcome by an adaptive integration scheme. The source points of the fundamental solution were arranged directly on the boundary. Thus the uncertain scale factor taken in the regular hybrid boundary node method (RHBNM) can be avoided. Numerical examples for some 3D elastic problems were given to show the characteristics. The computation results obtained by the present method are in excellent agreement with the analytical solution. The parameters that influence the performance of this method were studied through the numerical examples.