Catalysts play decisive roles in determining the energy conversion efficiencies of energy devices.Up to now,various types of nanostructured materials have been studied as advanced electrocatalysts.This review highligh...Catalysts play decisive roles in determining the energy conversion efficiencies of energy devices.Up to now,various types of nanostructured materials have been studied as advanced electrocatalysts.This review highlights the application of one‐dimensional(1D)metal electrocatalysts in energy conversion,focusing on two important reaction systems-direct methanol fuel cells and water splitting.In this review,we first give a broad introduction of electrochemical energy conversion.In the second section,we summarize the recent significant advances in the area of 1D metal nanostructured electrocatalysts for the electrochemical reactions involved in fuel cells and water splitting systems,including the oxygen reduction reaction,methanol oxidation reaction,hydrogen evolution reaction,and oxygen evolution reaction.Finally,based on the current studies on 1D nanostructures for energy electrocatalysis,we present a brief outlook on the research trend in 1D nanoelectrocatalysts for the two clean electrochemical energy conversion systems mentioned above.展开更多
In this paper we analyze a long standing problem of the appearance of spurious,non-physical solutions arising in the application of the effective mass theory to low dimensional nanostructures.The theory results in a s...In this paper we analyze a long standing problem of the appearance of spurious,non-physical solutions arising in the application of the effective mass theory to low dimensional nanostructures.The theory results in a system of coupled eigenvalue PDEs that is usually supplemented by interface boundary conditions that can be derived from a variational formulation of the problem.We analyze such a system for the envelope functions and show that a failure to restrict their Fourier expansion coeffi-cients to small k components would lead to the appearance of non-physical solutions.We survey the existing methodologies to eliminate this difficulty and propose a simple and effective solution.This solution is demonstrated on an example of a two-band model for both bulk materials and low-dimensional nanostructures.Finally,based on the above requirement of small k,we derive a model for nanostructures with cylindrical symmetry and apply the developed model to the analysis of quantum dots using an eight-band model.展开更多
One-dimensional (1D) ZnO nanostructures have been studied intensively and extensively over the last decade not only for their remarkable chemical and physical properties, but also for their diverse current and futur...One-dimensional (1D) ZnO nanostructures have been studied intensively and extensively over the last decade not only for their remarkable chemical and physical properties, but also for their diverse current and future technological applications. This article gives a comprehensive overview of the progress that has been made within the context of 1D ZnO nanostructures synthesized via wet chemical methods. We will cover the synthetic methodologies and the corresponding growth mechanisms, various nanostructures grown, their doping and alloying, and position-controlled growth on substrates. Finally, we will review their functional properties in catalysis, hydrophobic surface modification, sensing, and electronic, optical, optoelectronic, and energy harvesting devices.展开更多
La(OH)3 nanorods with diameters of 20-40 nm and lengths of 200-300 nm were synthesized by a hydrothermal microemulsion method. The structure and morphology of the final products were characterized by X-ray powder di...La(OH)3 nanorods with diameters of 20-40 nm and lengths of 200-300 nm were synthesized by a hydrothermal microemulsion method. The structure and morphology of the final products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscope (FESEM).展开更多
A facile method is reported to controllably fabricate one dimensional (1D) polymer nan,astructures via metallogel template polymerization. The metallogel was prepared through coordination interactions between silver...A facile method is reported to controllably fabricate one dimensional (1D) polymer nan,astructures via metallogel template polymerization. The metallogel was prepared through coordination interactions between silver ions and a ligand (L) bearing three pyridyl groups in tetrahydrofuran (THF). The diameters of the metallogel nanofibers could be tuned by the gel concentration (GC). Due to its high thermal stability and facility of removal, the metallogel was used as the template for radical polymerization of diacryolyl-2,6-diaminopyridine (DADAP) to form poly-diacryolyl-2,6-diaminopyridine (PDADAP) nanostructures. The gradually eroding of the templates by PDADAP provided us an effective way to fabricate various nanostructures of the polymer. We have demonstrated that different 1D nanostructures, including n^noribbons, nanotubes and nanowires, could be selectively fabricated by adjusting polymerization time, monomer concentration and GC. The rheological properties of the gel samples were tested by a rheometer. As prolonging the reaction time, more and more polymers were formed and the strength of the resulting polymer gels became higher and higher. The simple preparation process, easy controlled microstructures and adequate gel strength would make it a facile synthetic method for different 1D polymer nanosturctures.展开更多
In this paper,indium doped SnO2 nanorods and nanowires have been prepared by the molten salt method,and the effects of indium doping concentration on the morphology and electrical properties of one-dimensional(1D) SnO...In this paper,indium doped SnO2 nanorods and nanowires have been prepared by the molten salt method,and the effects of indium doping concentration on the morphology and electrical properties of one-dimensional(1D) SnO2 nanostructures have been studied.It is found that indium doping concentration can affect the epitaxial growth,morphology and the electrical conductance of 1D SnO2 nanostructures.It is also found that the element made by using 6 mol% indium doped SnO2 nanorods responds to nitrogen gas.展开更多
基金supported by the National Natural Science Foundation of China(21575134,21633008,21773224)National Key R&D Program of China(2016YFA0203200)K.C.Wong Education Foundation~~
文摘Catalysts play decisive roles in determining the energy conversion efficiencies of energy devices.Up to now,various types of nanostructured materials have been studied as advanced electrocatalysts.This review highlights the application of one‐dimensional(1D)metal electrocatalysts in energy conversion,focusing on two important reaction systems-direct methanol fuel cells and water splitting.In this review,we first give a broad introduction of electrochemical energy conversion.In the second section,we summarize the recent significant advances in the area of 1D metal nanostructured electrocatalysts for the electrochemical reactions involved in fuel cells and water splitting systems,including the oxygen reduction reaction,methanol oxidation reaction,hydrogen evolution reaction,and oxygen evolution reaction.Finally,based on the current studies on 1D nanostructures for energy electrocatalysis,we present a brief outlook on the research trend in 1D nanoelectrocatalysts for the two clean electrochemical energy conversion systems mentioned above.
文摘In this paper we analyze a long standing problem of the appearance of spurious,non-physical solutions arising in the application of the effective mass theory to low dimensional nanostructures.The theory results in a system of coupled eigenvalue PDEs that is usually supplemented by interface boundary conditions that can be derived from a variational formulation of the problem.We analyze such a system for the envelope functions and show that a failure to restrict their Fourier expansion coeffi-cients to small k components would lead to the appearance of non-physical solutions.We survey the existing methodologies to eliminate this difficulty and propose a simple and effective solution.This solution is demonstrated on an example of a two-band model for both bulk materials and low-dimensional nanostructures.Finally,based on the above requirement of small k,we derive a model for nanostructures with cylindrical symmetry and apply the developed model to the analysis of quantum dots using an eight-band model.
文摘One-dimensional (1D) ZnO nanostructures have been studied intensively and extensively over the last decade not only for their remarkable chemical and physical properties, but also for their diverse current and future technological applications. This article gives a comprehensive overview of the progress that has been made within the context of 1D ZnO nanostructures synthesized via wet chemical methods. We will cover the synthetic methodologies and the corresponding growth mechanisms, various nanostructures grown, their doping and alloying, and position-controlled growth on substrates. Finally, we will review their functional properties in catalysis, hydrophobic surface modification, sensing, and electronic, optical, optoelectronic, and energy harvesting devices.
文摘La(OH)3 nanorods with diameters of 20-40 nm and lengths of 200-300 nm were synthesized by a hydrothermal microemulsion method. The structure and morphology of the final products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscope (FESEM).
基金financially supported by the National Natural Science Foundation of China(Nos.20874055 and 21174079)Hi-tech Research and Development Program(863 plan) of China(No.2009AA062903)
文摘A facile method is reported to controllably fabricate one dimensional (1D) polymer nan,astructures via metallogel template polymerization. The metallogel was prepared through coordination interactions between silver ions and a ligand (L) bearing three pyridyl groups in tetrahydrofuran (THF). The diameters of the metallogel nanofibers could be tuned by the gel concentration (GC). Due to its high thermal stability and facility of removal, the metallogel was used as the template for radical polymerization of diacryolyl-2,6-diaminopyridine (DADAP) to form poly-diacryolyl-2,6-diaminopyridine (PDADAP) nanostructures. The gradually eroding of the templates by PDADAP provided us an effective way to fabricate various nanostructures of the polymer. We have demonstrated that different 1D nanostructures, including n^noribbons, nanotubes and nanowires, could be selectively fabricated by adjusting polymerization time, monomer concentration and GC. The rheological properties of the gel samples were tested by a rheometer. As prolonging the reaction time, more and more polymers were formed and the strength of the resulting polymer gels became higher and higher. The simple preparation process, easy controlled microstructures and adequate gel strength would make it a facile synthetic method for different 1D polymer nanosturctures.
基金support from the Scientific Research Foundation for Young Talents of Fuzhou University (Grant No. 0041826483)Research Foundation for the Doctor of Guangdong Pharmaceutical University(Grant No. 2007YKX15)Research Foundation for the Excellent Yong Teacher of Guangdong Pharmaceutical University
文摘In this paper,indium doped SnO2 nanorods and nanowires have been prepared by the molten salt method,and the effects of indium doping concentration on the morphology and electrical properties of one-dimensional(1D) SnO2 nanostructures have been studied.It is found that indium doping concentration can affect the epitaxial growth,morphology and the electrical conductance of 1D SnO2 nanostructures.It is also found that the element made by using 6 mol% indium doped SnO2 nanorods responds to nitrogen gas.