History matching is a critical step in reservoir numerical simulation algorithms.It is typically hindered by difficulties associated with the high-dimensionality of the problem and the gradient calculation approach.He...History matching is a critical step in reservoir numerical simulation algorithms.It is typically hindered by difficulties associated with the high-dimensionality of the problem and the gradient calculation approach.Here,a multi-step solving method is proposed by which,first,a Fast marching method(FMM)is used to calculate the pressure propagation time and determine the single-well sensitive area.Second,a mathematical model for history matching is implemented using a Bayesian framework.Third,an effective decomposition strategy is adopted for parameter dimensionality reduction.Finally,a localization matrix is constructed based on the single-well sensitive area data to modify the gradient of the objective function.This method has been verified through a water drive conceptual example and a real field case.The results have shown that the proposed method can generate more accurate gradient information and predictions compared to the traditional analytical gradient methods and other gradient-free algorithms.展开更多
Through finite element numerical simulation and based on laminated plate theory, the effect of dimension on the torsion properties of uniform C/SiC composites pipe was studied to provide a theoretical guidance for pre...Through finite element numerical simulation and based on laminated plate theory, the effect of dimension on the torsion properties of uniform C/SiC composites pipe was studied to provide a theoretical guidance for preparing the C/SiC pipe with different dimensions. The results show that, with increasing length of pipe, the anti-torsion section coefficient of pipe increases whereas the torsion angle per unit length decreases. Increasing the length can improve the torsion property. Anti-torsion section coefficient rises with increasing internal radius, while the torsion angle per unit length decreases to a constant. With increasing thickness, the anti-torsion section coefficient increases whereas the amplitude decreases gradually, and the torsion angle per unit length is a constant. Increment of internal radius and thickness improves the torsion property finitely.展开更多
基金This study was supported by National Natural Science Foundation of China(Nos.52104017,51874044,51922007)Southern Marine Science and Engineering Guangdong Laboratory(Zhanjiang)(No.zjw-2019-04).
文摘History matching is a critical step in reservoir numerical simulation algorithms.It is typically hindered by difficulties associated with the high-dimensionality of the problem and the gradient calculation approach.Here,a multi-step solving method is proposed by which,first,a Fast marching method(FMM)is used to calculate the pressure propagation time and determine the single-well sensitive area.Second,a mathematical model for history matching is implemented using a Bayesian framework.Third,an effective decomposition strategy is adopted for parameter dimensionality reduction.Finally,a localization matrix is constructed based on the single-well sensitive area data to modify the gradient of the objective function.This method has been verified through a water drive conceptual example and a real field case.The results have shown that the proposed method can generate more accurate gradient information and predictions compared to the traditional analytical gradient methods and other gradient-free algorithms.
基金Funded by the National Natural Science Foundation of China(Nos.51772246,51272210,50902112,and U1737209)the Program for New Century Excellent Talents in University(NCET-13-0474)+1 种基金the Fundamental Research Funds for the Central Universities(3102017jg02001)the National Program for Support of Topnotch Young Professionals
文摘Through finite element numerical simulation and based on laminated plate theory, the effect of dimension on the torsion properties of uniform C/SiC composites pipe was studied to provide a theoretical guidance for preparing the C/SiC pipe with different dimensions. The results show that, with increasing length of pipe, the anti-torsion section coefficient of pipe increases whereas the torsion angle per unit length decreases. Increasing the length can improve the torsion property. Anti-torsion section coefficient rises with increasing internal radius, while the torsion angle per unit length decreases to a constant. With increasing thickness, the anti-torsion section coefficient increases whereas the amplitude decreases gradually, and the torsion angle per unit length is a constant. Increment of internal radius and thickness improves the torsion property finitely.